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Abstract. Web applications (web apps) have become one of the largest
parts of the current software market over years. Modern web apps offer
several business benefits over other traditional and standalone applica-
tions. Mainly, cross-platform compatibility and data integration are some
of the critical features that encouraged businesses to shift towards the
adoption of Web apps. Web apps are evolving rapidly to acquire new
features, correct errors or adapt to new environment changes especially
with the volatile context of the web development. These ongoing amends
often affect software quality due to poor coding and bad design practices,
known as code smells or anti-patterns. The presence of code smells in a
software project is widely considered as form of technical debt and makes
the software harder to understand, maintain and evolve, besides leading
to failures and unforeseen costs. Therefore, it is critical for web apps to
monitor the existence and spread of such anti-patterns. In this paper,
we specifically target web apps built with PHP being the most used
server-side programming language. We conduct the first empirical study
to investigate the diffuseness of code smells in Web apps and their rela-
tionship with the change proneness of affected code. We detect 12 types
of common code smells across a total of 223 releases of 5 popular and
long-lived open-source web apps. The key findings of our study include:
1) complex and large classes and methods are frequently committed in
PHP files, 2) smelly files are more prone to change than non-smelly files,
and 3) Too Many Methods and High Coupling are the most associated
smells with files change-proneness.

Keywords: Code smells · Web applications · PHP · Diffuseness ·
Change proneness

1 Introduction

Web applications as defined by Google1 are: “...modern web capabilities to deliver
an app-like user experience...”. Web apps are characterized by their inherent
1 https://developers.google.com/web/updates/2015/12/getting-started-pwa.
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heterogeneous nature in (1) target platforms as web apps are usually split in
their client and server sides, and (2) formalisms as web apps are typically built
with a mixture of programming and formatting languages. Such heterogeneity
makes the evolution of web applications unique and different than traditional
software systems.

Like any software application, web apps evolve rapidly to add new users func-
tionalities, fix bugs, and adapt to new environmental changes. Such frequent and
unavoidable changes, in the volatile context of the web development, can alter
the quality of these applications. Indeed, acknowledged software design princi-
ples and practices are needed to be in place and empowered to support web
apps development life-cycle. However, as software decays, some bad design and
implementation practices may appear, which are known as code smells or anti-
patterns [4,8]. Code smells are symptoms of poor design and implementation
choices applied by developers that may hinder the comprehensibility and main-
tainability of software systems. Common code smells include, large classes, long
methods, long parameter list, high coupling, complex class, etc. [4,8].

Several research efforts have been dedicated to studying code smells in tra-
ditional desktop software systems. It refers to bad coding practices that are
committed mostly without the developers’ knowledge [35]. Some studies focused
on analyzing how code smells are introduced in the codebase [2,34,35], and how
long they persist in the system [28,34]. Other studies focused on the impact of
code smells on systems change and fault-proneness [21,32], and whether develop-
ers perceive these smells as problematic [2]. However, little is known about code
smells diffuseness and impact for web applications. We cannot assume without
empirical evidence the applicability of the prior findings on web apps as they
widely differ. A dynamic web application package may encompass different tech-
nologies as JS, HTML, CSS, and PHP combining both programming and for-
matting aspects, which unlock another dimension of complexity, in comparison
with traditional desktop applications. For example, web apps support combining
code fragments, allowing to code PHP or JS inside HTML pages and vice versa.
This coding practice emerges new types of code smells violating the separation of
concerns design principle [30]. On a technical level, heterogeneous and dynamic
web apps are more complex. Intensive computing tasks are performed to deal
with databases and the HTTP client side’s requests, which require more coding
and maintenance efforts jeopardizing their quality and performance.

In this paper, we conduct the first empirical study on the diffuseness of code
smells in web applications and investigate the impact of code smells on the source
code change-proneness, i.e., to investigate whether smelly files tend to require a
higher frequency of changes when updating the files, as a side effect of their infec-
tion with bad programming practices. Moreover, we individually investigate how
each smell type can contribute differently to the change-proneness. In particular,
we focus our study on PHP-based web applications, being the top programming
language used in server-side applications development. Indeed, nearly 79% of
web apps are using PHP2. However, despite the popularity of the language in

2 https://w3techs.com/technologies/overview/programming language.

https://w3techs.com/technologies/overview/programming_language
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web development, no previous studies have empirically examined the behavior of
code smells and how they impact the system’s maintainability. To conduct our
empirical study, we mined the historical changes of 223 releases from 5 popular
web projects, phpMyAdmin, Joomla, WordPress, Piwik, and Laravel, to detect
the existence of 12 common code smell types. The study provides empirical
evidence that files containing code smells are more susceptible to change than
non-smelly files, which negatively hinders the development of web apps, when
containing code smells, as developers spend a larger amount of time and effort to
update them. Results show that, at least, smelly-files are 2 times more prone to
changes. Specifically, developers tend to write long and complex methods which
make the code more hard to understand and modify. The obtained results indi-
cate that the High Method Complexity and the Excessive Method Length code
smells are frequently committed in PHP files. On the other hand, other smells
such as the Too Many Methods and High Coupling are not frequently occur-
ring, but they are the most smells leading to higher change-proneness. Findings
from this study provide empirical evidence for practitioners that detecting and
assessing code smells impact is of paramount importance to effectively reduce
maintenance costs, as well as for the research community to concentrate their
refactoring efforts on most harmful code smells. Further, this study serves as
a first step to assess the magnitude of the severity of change-proneness related
smells compared to other factors such as the number of occurrences of the smell
and a class fault-proneness. We encourage the community to further harvest
the data we collected by publishing our dataset for replication and extension
purposes [1].

The rest of the paper is structured as follows. Section 2 presents the related
literature on the diffuseness and impact of code smells. Section 3 describes the
design of our empirical study. Section 4 presents and discusses the main findings.
Threats to validity are discussed in Sect. 5. We conclude and highlight our main
future research directions in Sect. 6.

2 Related Work

A number of studies exist on code smells in traditional software systems. We
divide the existing works on 2 main categories (i) studies on the diffuseness and
evolution of code smells, and (ii) studies on the impact of code smells.

2.1 Diffuseness and Evolution of Code Smells

There exists little knowledge of code smells in web applications. Recently,
Rio et al. [31] targeted the survival probability of six code smell types using
PHPMD3, a PHP-based code smells detection tool, in 4 web applications. They
considered three scattered smells (concern coupled entities) and three localised
smells (concern an entity in itself). The findings did not show consistent behav-
ior across the four systems. The survivability rate varies with the type of smells
3 https://phpmd.org.

https://phpmd.org
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for each application. However, the introduction and removal events are higher in
favor of localised smells. This can be explained by how code practices coupling
several system components are harder to maintain. Nguyen et al. [19] proposed a
detection tool WebScent of six kinds of the so-called embedded code smells that
violate three design principles (separation of concerns, software modularity, and
compliance with coding standards). The approach consisted of detecting code
smells in the portions of PHP scripts responsible for generating the client-side
code. The analysis highlighted that up to 81% of server files suffer from embed-
ded code smells. Consequently, these files have a lower quality than smell-free
files. Ouni et al. [22,24] introduced an automated approach to detect Web service
anti-patterns in WSDL-based Web services.

However, to the best of our knowledge, no study has investigated the dif-
fuseness of code smells in Web server-side projects and their relationship with
development activities. Thus, we present the related literature on code smells
in other programming languages. Palomba et al. [28] have investigated the dif-
fuseness of code smells in desktop software systems and found that code smells
related to large and complex code are most persistent in the system. They also
investigated the correlation between the smell types and systems characteristics
(e.g., number of classes, number of methods, and lines of code LOC). Code smells
are indeed diffused in large systems. Interestingly, this correlation does hold with
smell types representing the more functional and sophisticated side of the system
as like Long method and complex class. Olbrich et al. [20] analyzed the evolu-
tion of God Class, and Shotgun Surgery code smells in two open-source projects.
The study first concluded that the evolution of smells is not steady along with
the evolution of the systems. Concerning the change-proneness, they highlighted
that smelly files exhibit more change. Same results are witnessed when consid-
ering the God Class, and Brain Class in the evolution of three projects [21].
The study consisted of analyzing the impact of smells on the change frequency
(number of commits in which a file has changed) and change size (code churn) of
files. An important conclusion highlighted that classes containing the examined
smells are more prone to change frequency and change size. However, when the
God and Brain classes are normalized with respect to size (per LOC), they are
less subject to change. In the same line, Chatzigeorgiou et al. [5] studied the
evolution of Long method, Feature Envy, and State Checking code smells in 24
releases of two Java projects (JFlex, and JFreeChart). In all examined releases,
the Long Method, which signifies a large-sized piece of code, had exponential
growth as a system evolves. Contrary to the Feature Envy and State Checking,
which have shown a steady low rate of evolution.

2.2 Relationship Between Code Smells and Development Activities

Khomh et al. [12] conducted an empirical analysis on 13 different releases of
Azureus and Eclipse, considering 9 code smells, to investigate three relationships.
(i) smelly classes are more exposed to frequent updates than others (3 to 8 times
in favor of smelly classes). (ii) the more a class has instances of smells, the more
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it is change-prone. (iii) particular but not common kinds of smells lead to more
change-proneness than others. An extended study examined code smells impact
in 54 releases of four projects [13] confirmed that smelly classes are more subject
to change and faults. These results were confirmed by Spadini et al. [33], who
found that the presence of test smells yields to more code changes, which might
produce bugs in the production code. Saboury et al. [32] have carried out an
empirical investigation on the impact of 12 JavaScript code smells on the fault-
proneness of modified classes of five projects. They compared the fault-proneness
between smelly and non-smelly files using the survival analysis test to capture a
longitudinal behavior. The results show that non-smelly files have a 65% chance
less than files with smells. As well, they opted for a Cox Hazard test to asses the
impact of three factors on the survivability of faults (LOC, Code churn, and the
number of Previous Bugs). Their results indicate that the number of Previous-
Bugs, which means the number of fault-fixing changes, is fault-inducing. Aniche
et al. [2] examined when code smells are introduced and how long they survive
using the survival analysis test. Their study highlighted some important points
(i) code smells are more introduced from the first release of the system, and (ii)
code smells that are present with the first commits tend to survive more.

3 Empirical Study Design

As presented in Fig. 1, our empirical study aims at analyzing the diffuseness
and impact of code smells in web applications. The diffuseness refers to the rate
of code smells in code components (classes, methods), i.e., how many parts of
the application are affected by at least one instance of code smells. The analysis
of smells distribution helps to better assess (1) the impact of code smells on
the change-proneness of smelly files, and (2) how specific code smell types could
result into different change sizes. It is worth noting that some smell types could
lead to more change-proneness but are poorly diffused and vise versa.
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Fig. 1. Overview of our empirical study.

To collect our dataset for our empirical study, we considered a set of common
code smell types in Web software applications. To detect instance of code smells
in our benchmark, we use PHPMD [29], a widely used tool for quality assurance



72 N. Bessghaier et al.

and code smells detection specialized for PHP software applications. We consid-
ered a list of 12 smell types as they are most known, and widely being discussed
in recent studies [7,9,15,16,31]. It is worth noting that we selected class-level
and method-level code smells that affect the source code’s understandability or
might aggravate the performance to capture a broad analysis of our studied
phenomena. Although, PHPMD supports the detection of 36 types of design
flaws, we basically considered common code smell types [3,18,23,25–27,31] and
excluded smells related to low level violations such as calling the var dump()
function in the production code. Table 1 provides the list of the considered code
smells along with their definitions.

3.1 Research Questions

We formulate the following research questions.

– RQ1: What is the diffuseness of code smells in web apps? We aim to know
the most diffused and frequently occurring code smells to recognize which
bad coding practices are more common and thus prioritize their refactoring.

– RQ2: To what extent files affected by code smells exhibit a different level of
change-proneness as compared to non-smelly files? We aim to assess whether
smelly files undergo more maintenance activities compared to non-smelly files
by testing the following null hypotheses:
H20 : Smelly files are not more prone to change during the software evolution
as compared to non-smelly files.

– RQ3: What is the relationship between specific types of code smells and the
level of change-proneness? We investigate whether some smell types con-
tribute more to the change-proneness of smelly classes. To answer our research
question, we test the validity of the following null hypothesis.
H30 : Smelly files undergo the same level of change-proneness for all smell
types.

To answer our research questions, we mined 223 releases of 5 popular open-
source PHP web-based applications. PhpMyAdmin4 is a framework to handle
the administration of MySQL over the Web and supports MariaDB. Joomla5

is a Content Management System (CMS) which enables you to build websites
and powerful online applications. WordPress6 is a CMS system written in PHP
and paired with MySQL or MariaDB database. Piwik7 is an analytics and full
featured PHP MySQL software to download and install on webserver. Laravel8

is a web application framework with expressive, powerful syntax and provides
tools required for large, robust applications. We chose applications with differ-
ent sizes ranging from 12 to 662 KLOCs. As presented in Table 2, the studied
4 https://github.com/phpmyadmin/phpmyadmin.
5 https://github.com/joomla/joomla-cms.
6 https://github.com/WordPress/WordPress.
7 https://github.com/matomo-org/matomo.
8 https://github.com/laravel/laravel.

https://github.com/phpmyadmin/phpmyadmin
https://github.com/joomla/joomla-cms
https://github.com/WordPress/WordPress
https://github.com/matomo-org/matomo
https://github.com/laravel/laravel
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Table 1. List of code smells considered in our study

Code smell Description

Excessive Number Of Children (ENOC) A class with too many descendants usually

indicates an unbalanced class hierarchy [29,31]

Excessive Depth Of Inheritance (EDOI) A class with a deep inheritance tree can lead to

an unmaintainable code as the coupling would

increase [29,31]

High Coupling (HC) A class with too many dependencies makes it

harder to maintain and evolve [8,16,29,31]

Empty Catch Block (ECB) Fixing an execution failure of an unknown

exception type will require more efforts to

understand the error condition [29]

Goto Statement (GTS) Goto makes the logic of an application hard to

understand [29]

High Method Complexity (HMC) The cyclomatic complexity at the method level

represents the number of decision points (e.g.,

if, for, while). The higher the number of

decision points, the higher the number of test

cases needed to test all the different execution

paths [9,29]

High NPath Complexity (HNPC) The NPath complexity is the number of ways

(nested if/else statements) the code can get

executed, which would decrease the readability

of the code and cause testing issues [29]

Excessive Method Length (EML) When a method exceeds 100 NCLOC, it is

considered a broad method that does too much.

These methods are likely to end up processing

data differently than what their context

suggests until they become hard to understand

and maintain [7,9,16,29,31]

Excessive Class Length (ECL) Large classes are a good suspect for refactoring,

as their size represents a challenge to manage

efficiently, and maintain them [15,16,29,31]

Excessive Parameter List (EPL) A long parameter set can indicate that a

method is doing too many different things,

which makes it harder to understand its

behavior [7,17,29,31]

Too Many Public Methods (TMPM) A large number of public methods indicate that

the class does not preserve its data

encapsulated. Consequently, changing the

internal behavior of the class requires

additional efforts not to risk damaging some

dependencies. In practice, we cannot restrict

the number of public methods. Only what could

be exposed should be public. If external classes

are extensively accessing these methods, they

should be moved to reduce the coupling [29]

Too Many Methods (TMM) The Too Many Methods is the symptom of a

class that contains a large number of methods

that typically do not belong to its

responsibilities and consequently decreases the

cohesion level [29]



74 N. Bessghaier et al.

projects belong to different application domains and actively engineered during
9 to 15 years. Table 2 reports the number of considered releases, the number of
stars on Github, and we count the applications size in terms of the number of
classes, methods, and KLOCs for each project using the PHPLOC tool9.

Table 2. The studied systems statistics.

Name Releases Period Stars # classes KLOCs # smells

phpMyAdmin 55 2014–2020 4.7k 30–645 228–328 60,695

Joomla 34 2011–2019 3.4k 1,102–2,631 271–662 75,616

WordPress 74 2005–2019 13.4k 24–496 37–391 106,962

Piwik 38 2010–2020 12.6k 1,017–2,095 242–374 39,896

Laravel 22 2012–2020 57.3k 95–248 12–40 1,647

3.2 Analysis Method

To answer RQ1, we first compute the absolute number of code smells present in
each application (aggregation of releases). Then, we assess the number of affected
classes for each smell type. To better position the number of smells with respect
to the size of the application, we assess the diffuseness of smells per KLOC.

To answer RQ2, we use the git versioning system to mine the change his-
tory of the five applications. We identify all modified PHP files in each commit
between the releases rj−1 and rj . Then, we extract the number of modification
each modified file has undergone using the following git command:
$ git show --stat --no-commit-id --oneline -r SHA1..SHA2"∗.php"
Then, we identify the nature of the returned modified files whether it is a smelly
or a non-smelly class. Thereafter, we compute the change-proneness of a modified
class c as the sum of the changes performed in all commits between the releases
rj−1 and rj .

Change-proneness(c, rj) =
i=n∑

i=1

churn(c, comi) (1)

where n is the number of commits between releases rj−1 and rj , the function
churn(c, comi) returns the code churn in terms of number of added, removed and
modified lines of code in the class c in commit comi using the GitHub API10.

After the extraction of all data, we compare the change-proneness of smelly
and non-smelly classes using the beanplot representation [11]. A beanplot
extends the boxplot’s visualization by representing the density of data distri-
bution along with the individual observations. To assess H20, we verify whether

9 https://github.com/sebastianbergmann/phploc.
10 https://developer.github.com/v3/.

https://github.com/sebastianbergmann/phploc
https://developer.github.com/v3/
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there is a significant difference between the two tested populations (smelly, non-
smelly). Therefore, after the data normality check (p-value = 0.8 and p-value =
0.6), we apply the parametric independent t-test [14] to check the magnitude of
difference between our two groups. The t-test serves to evaluate the alternative
hypothesis stating how likely one sample exhibits dominance compared with the
other sample. We consolidate the test by measuring the parametric Cohen-d
effect size. As stated by [6], the effect size tells how important the difference
between the two samples is. An effect size is considered small if 0.2 ≤ d < 0.5,
medium if 0.5 ≤ d < 0.8 and large if d ≥ 0.8. It is worth noting that we consider a
class as smelly only if it has at least one instance of code smell. We narrowed the
gap between smelly and non-smelly classes to deeply analyze the phenomenon of
change-proneness considering most harmful smells. Moreover, if a class changes
from smelly to non-smelly in some releases and vise versa, it contributes to both
sets of smelly and non-smelly classes.

To answer RQ3, we assess the impact of smells types on the change-
proneness. We compute the number of occurrences of each smell type in the
smelly classes of each release. We quantify the impact of each smell type for
each project as the correlation score between the sum of the frequency count of
each smell type STi and the class state {0 or 1} representing whether a class
has changed or not between two releases rj−1 → rj . To statistically analyze
the effect of each smell type on a class change-proneness, we opted for a logis-
tic regression test [10] similar to khomh et al. [12] to reject the null hypothesis
H30 stating that classes undergo the same change size for all types of smells.
The logistic regression should decide whether the class would change for each
smell type. To asses the change of a class based on a set of smells, a class would
represent the dependent variable Ci that would change if one of the smell types
STj (independent variable) changes as well. In a logistic model, the dependent
variable could take only two values (changed = 1, not changed = 0). Thus, our
multivariate model equation applied to a class Ci in a release rt is defined as
follows:

P (Ci) =
e(CP +

∑12
1 bj ∗ STj)

1 + e(CP +
∑12

1 bj ∗ STj)
∈ [0, 1] (2)

where P is the likelihood that a class changes; CP is the change proneness of a
class {0,1}; and bj is the number of occurrences of a smell type STj .

We apply our logistic regression model for each smell type detected in the
223 releases in our benchmark. Then, we count the number of times the p-value
of a smell is significant (the probability is closer to 1).

4 Study Results and Analysis

4.1 RQ1: Code Smells Diffuseness

Figure 2 reports (i) the absolute number of code smells distribution in the ana-
lyzed projects, (ii) the number of affected classes by each code smell type, and
(iii) the density of code smells per KLOCs using the beanplot visualization. For
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the sake of clarity, we aggregate the occurrences of each code smell in our studied
projects into one single dataset. From the beanplots and Table 3, we observe the
existence of three main categories of code smell distributions (1) highly diffused
and highly frequent, (2) highly diffused and slightly frequent, and (3) slightly
diffused and slightly frequent.

Highly Diffused and Highly Frequent Smells: As shown in Fig. 2 and Table
3, the High Method Complexity smell is the most diffused (99%) and frequent
(42%) code smell. It typically manifests in the form of a high cyclomatic com-
plexity level within the methods. We found that this smell has a high number
of occurrences with 1,250 instances in the two last studied releases of Joomla
(3.9.13 and 3.9.14). For instance, the class Joomla.CMS.Form.Form in release
3.9.13 has a cyclomatic complexity of 64 in its method filterField() respon-
sible for applying an input filter to a value based on field data. These methods
are in general very long (on average, 261 LOC found in Joomla studied releases).
Moreover, we found that the High NPath Complexity occurs also in 99% of the
releases, representing 27% of the total number of detected smells. It has a total
of 820 occurrences in Joomla 3.9.13. Alike, Excessive Method Length impacts
95% of the releases, representing 16% of the smells with a peak reaching 556
in WordPress 5.3.2. Indeed, we found 12 long methods using AJAX with an
average of 143 LOC. Moreover, from a qualitative sense, the diffuseness of smell
instances per KLOC is reported in Fig. 2c which confirms that the High Method
Complexity, the High NPath Complexity, and the Excessive Method Length are
the most diffused smells with an average of 24, 17, and 13 instances respectively.

Highly Diffused and Slightly Frequent Smells: This category of smells
occur in the majority of the studied releases but with a limited number of
instances. As shown in Fig. 2 and Table 3, we observe that the High Coupling
smell exists in 98% of the releases, but representing only 2% of the accumulated
number of smells. For instance, we found that the High Coupling smell reaches
the bar of 99 instances in both releases of Piwik 3.13.0 and 3.13.1. On average,
each of the infected releases has 25 instances of this smell. As compared to other
studies in Android apps, the High Coupling is found to have weak diffuseness and
frequency as pointed by Mannan et al. [16]. To better understand this disparity
in terms of diffuseness, we conducted a closer analysis on the 3.13.0 release of
Piwik. Most of the instances are located in the Archive, and ArchiveProcessor
packages. In particular, the class CronArchive in Archive package has a cou-
pling between objects (CBO) score of 33 surpassing the established threshold of
13 which is considered as normal [29]. Hence, this disparity in the diffuseness
rate of the High Coupling between Android and web apps could be related to
the small size of Android apps along with their different structure and workflow
which typically come with a low coupling between code components.

Moreover, we found that the Excessive Class Length, the Too Many Public
Methods, the Excessive Number Of Children, and the Too Many Methods are
not frequent as they have a maximum number of occurrences per class that do
not exceed 5. For example, the Too Many Public Methods smell represents 5%
of the total number of smells, and is distributed across 86% of the releases as



On the Diffusion and Impact of Code Smells in Web Applications 77

shown in Fig. 2 and Table 3. Most diffused instances are in Joomla with a high
number of occurrences of 234 in the last five releases (from v3.9.7 to v3.9.14).
Likewise, among the highly diffused, but slightly frequent code smells, we found
the Too Many Public Methods smell which have more instances per KLOC (6). In
addition, the Empty Catch Block and Excessive Parameter List code smells are
impacting 65% and 89% of releases with the highest number of occurrences of 69
in Piwik (2.17.1 and 2.18.0) and 40 in Piwik 2.12.1 respectively. The Excessive
Parameter List has the highest occurrence number (19) of all slightly frequent
smells in the method image() in the package com.tecnick.tcpdf. The Excessive
Parameter List is a one single-metric violation that straightforwardly detects
the smell. Besides, it is also worth noting that, Wordpress and phpMyAdmin
applications have no instance of the Empty Catch Block, which is limited to one
instance per KLOC.

Fig. 2. The absolute number, % affected classes, and density per KLOC of smells.

Slightly Diffused and Slightly Frequent Smells: As shown in Fig. 2 and
Table 3, the Excessive Depth Of Inheritance and the Go to Statement code
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smells are slightly diffused and not frequent. Overall, the Excessive Depth Of
Inheritance smell exists only in 20 classes, impacting only 4% of the studied
releases, and it represents nearly 1% of the total number of detected code smells.
For instance, we found that the highest number of occurrences of the Excessive
Depth Of Inheritance smell is 10 in Piwik 1.8.0. Similarly, the Goto Statement
smell represents nearly 1% of the total number of code smells and affects 2% of
the studied releases. This particular smell occurs only in phpMyAdmin (10% of
the releases of phpMyAdmin), with a negligible percentage of ∼1% of the total
number of code smells detected in phpMyAdmin. Since its spread is limited to a
few classes, the correction of Goto Statement becomes easier for developers.

Table 3 reports the diffuseness of code smells according to the accumu-
lated number of releases. The “% of affected releases” column represents the
percentage of affected releases by a particular smell. For example, the Too
Many Methods smell impacts 77% of the releases. The “max instances” col-
umn reports the highest number of occurrences of a given smell in a class. For
instance, the Too Many Methods smell has the highest number of occurrences in
the libraries.simplepi.e.simplepi.e.php file in Joomla 2.5.3 which has 5
classes having respectively 102, 40, 40, 35, and 26 methods exceeding the basic
threshold of 25 [29].

To sum up, most of the smells are quite diffused in the studied subjects. Par-
ticularly, smells related to long and complex code fragments (i.e., High Method
Complexity, High NPath Complexity, and Excessive Method Length) have the
highest number of instances per KLOC, and impact the highest number of
classes. Our findings align with those of Palomba et al. [28] on Java traditional
code smells, where Long method and Complex Class code smells are the most
diffused. Moreover, 3/4 of the analyzed code smells are not frequent (i.e., limited
number of occurrences per release), but affecting 68% of the studied projects.
Besides, Joomla is the most affected project having the maximum number of
occurrences of four smells High Method Complexity, High NPath Complexity,
Excessive Method Length, and Too Many Public method. By studying code smells
diffuseness, we aim to assess the interplay between the magnitude of the diffuse-
ness for each smell type and code maintainability.

4.2 RQ2: The Impact of Code Smells on the Change-Proneness

The beanplots in Fig. 3 illustrate the change size range of both smelly and
non-smelly classes. As previously found in studies targeting Java object-oriented
systems [13,28], code smells lead to more code changes in a class and thus require
higher maintenance efforts. As reported in Fig. 3, we witnessed similar findings,
as we found that smelly classes clearly exhibit a higher level of change-proneness
as compared to non-smelly classes. The median of change-proneness (CP) of
smelly classes is 12.8 which is almost three times higher than the non-smelly
classes (4.1). For example, the median change in Laravel is 2 against a median
of 4 in the smelly classes. The intense density shape in the non-smelly class set
demonstrates how the majority of non-smelly classes experience similar change
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Table 3. Diffuseness of code smells in the analyzed projects

Code smell % affected releases % of smells Max instances

High Method Complexity 99% 42% 96

High NPath Complexity 99% 27% 76

Excessive Method Length 95% 16% 42

High Coupling 98% 2% 2

Excessive Class Length 98% 2% 3

Excessive Parameter List 89% 1% 19

Too Many Public Methods 86% 5% 5

Excessive Number of Children 78% ∼1% 1

Too Many Methods 77% 1% 5

Goto Statement 2% ∼1% 1

Empty Catch Block 65% 1% 4

Excessive Depth of Inheritance 4% ∼1% 1

rate. For instance, 41 non-smelly classes in Laravel that are responsible for lan-
guages setting underwent almost the same modifications size. Unlike the smelly-
classes, each has its maintenance requirements, which seems to be related to the
co-existence of different types of code smells such as High Method Complexity
and Excessive Method Length. Referring to statistical evidence, the t-test shows
a statistically significant difference with a p-value = 0.03, while Cohen d shows
a large effect size of 1.8, allowing us to reject the null hypothesis H20. To sum
up, the majority of releases are affected by smells. However, the large portion of
the modified classes in each project are smells-free. Still, smelly classes undergo
more changes, and thus, exhibiting a higher level of change-proneness than non
smelly classes.

Fig. 3. Change-proneness of smelly and non-smelly classes.
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4.3 RQ3: The Impact of Code Smells Types on the
Change-Proneness

Table 4 reports the results of the logistic regression model for RQ3. The reported
values refer to the percentage of releases for which the correspondent smell type
is statistically significant in the logistic model with a p − value < 0.05. We
observe that the existence of smells does impact the majority of projects in terms
of increasing the proneness of their infected files, and this impact varies from
one project to another. More precisely, we highlight the High Method Complexity
(HMC), Excessive Method Length (EML) and Too Many Methods (TMM) smell
types, as they exhibit the highest impact on the change-proneness on 32%, 28%
and 25% of the releases, respectively. In particular, HMC has shown an impact
on two out of the five projects, namely Piwik and WordPress, and EML has an
impact on phpMyAdmin and Laravel, while TMM impacted 3 projects (Joomla,
Laravel and phpMyAdmin). On the other side, we observe that other smells such
as the Excessive Parameter List, the Excessive Number of Children, and Goto
Statement do not have statistically significant impact on the change-proneness
on any release or project. This can be due to the fact that the latter smells are
found to be slightly diffused and slightly frequent, as observed in RQ1.

Table 4. The results of the logistic regression model reporting the number of releases
and projects for which each smell type is statistically significant.

Code smell % sig. releases Projects

High method complexity 32% Piwik, WordPress

Excessive method length 28% phpMyAdmin, Laravel

Too many methods 25% Joomla, Laravel, phpMyAdmin

High coupling 21% Piwik, WordPress, phpMyAdmin

Excessive class length 13% phpMyadmin, Laravel

High NPath complexity 12% Piwik

Too many public methods 4% WordPress

Empty catch block 1.2% –

Excessive depth of inheritance 0.9% –

Excessive parameter list 0% –

Excessive number of children 0% –

Goto statement 0% –

The main insights that we can draw from these findings could be summarized
as follows (1) the slightly diffused and slightly frequent code smells have no sta-
tistically significant impact on change-proneness of files across the five projects.
Hence, not all smells should be given equal removal priority. For instance, the
GoTo Statement and Excessive Depth Of Inheritance are not seen as problem-
atic, as they do not cause an increase in the number of code changes; (2) Classes
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in Joomla tend to experience an increase on change percentage whenever there
is a variation in the number of Too Many Methods instances. (3) diffuseness
and frequency of smells do not necessarily correlate with their ability to impact
change-proneness of files. For example, The High method Complexity smell has
shown the highest diffuseness in 99% of the releases (cf. Table 3), yet, its statisti-
cally significant impact on files change-proneness is limited to only two projects.

We can conclude that the impact of smells varies by type and by project.
Existence of smells is alarming since they increase the chance of experiencing
higher change rate, especially with Too Many Methods and High Coupling that
scored the highest impact in our experiment. Since for each project, at least one
single smell is showing an effect on the change-proneness. Thus, we reject the
null hypothesis H30. knowing the types of code smells leading to more change-
proneness will aid in preparing specific refactoring plans and focus on fixing the
most harmful design and implementation practices.

5 Threats to Validity

The Construct validity concerns errors in measurements. In our context, we relied
on the git versioning systems of each project to count the number of changes.
For each release, we were interested in quantifying the changes in modified files.
Moreover, while we considered 12 common code smells based on recent studies
[18,31], there could be other code smell types to be considered. Moreover, similar
to Khomh et al. [12], we used the logistic regression test to determine which
smells are significant with the change-proneness.

The Internal validity concerns the factors that can limit the applicability
of our observations. We assessed the cause-effect relation between the presence
of code smells and the change-proneness of a file as the probability of smell
to exert an impact on the state of a class. Still, we cannot assume that the
changes made on a file are the result of code smells refactoring activities. Other
improvement activities (exp. adding new functionalities) could yield to these
changes. However, we expect that classes with high change-proneness represent
the business logic of the system that does too much and gets frequently modified.
Thus, these classes are more prone to having code smells and possibly exhibit
more refactoring operations.

The External validity concerns the generalizability of our findings. We have
analyzed a total of 5 PHP Web projects with different communities, sizes, and
application domains and with a minimum of 9 years of history. We are aware
that we cannot generalize our finding to other projects. In the future, we plan to
reduce this threat further by analyzing more projects from more industrial and
open-source software projects and other web programming languages.

6 Conclusion

This paper reported a large study conducted on 223 releases of five popular
web-based applications. The empirical study aimed at understanding the dif-
fuseness of code smells in web open source apps and their relation with source
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code change-proneness. The statistical analysis of the obtained results show that
most diffused and frequent code smells are related to the size and complexity of
code fragments. Moreover, our findings indicate that classes with such smells are
more prone to change than other classes which may require more maintenance
efforts. To provide better insights, we individually investigated the relationship
between each smell type and the change-proneness using a logistic regression
model. Results showed that specific smells do have an impact on the change-
proneness of a class. However, the type of these change-inducing smells tend
to be context related. Our findings indicate that code smells should be carefully
monitored by web programmers, since they are diffused in web applications and
related to maintainability aspects such as change-proneness. As future work, we
first plan to replicate our study on other open source and industrial web appli-
cations. We plan also to analyze the impact of the co-occurences of code smells
on the change-proneness. Moreover, we plan to investigate the impact of smelly-
files on the fault-proneness. More interestingly, we will develop automated code
smells refactoring recommendation and prioritization techniques in the context
of web apps to better monitor code smells.
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