
Vol.:(0123456789)

Software Quality Journal
https://doi.org/10.1007/s11219-021-09567-w

1 3

A longitudinal exploratory study on code smells in server
side web applications

Narjes Bessghaier1 · Ali Ouni1 · Mohamed Wiem Mkaouer2

Accepted: 6 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Modern web applications have become one of the largest parts of the current software
market over years, bringing cross-platform compatibility and data integration advantages
that encouraged businesses to shift toward their adoption. Like any software application,
code smells can be manifested as violations of implementation and design standards which
could impact the maintainability, comprehensibility and performance of web applications.
While there have been extensive studies on traditional code smells recently, little knowl-
edge is available on code smells in web-based applications (web apps). As web appli-
cations are split into their client and server sides, we present in this study a first step in
exploring the code smells diffuseness and effect on the server side of web applications.
To this end, we conduct an exploratory study on a total of 430 releases from 10 long-
lived open-source web-based applications on 12 common code smell types. We aim to bet-
ter understand and gain insights into the diffuseness of code smells, their co-occurrences
and effects on the change- and fault-proneness in server side code. Our study delivers
several important findings. First, code smells are not equally diffused in web apps server
side, among which smells related to complex, and large code components display high dif-
fuseness and frequency rates. Second, the co-occurrence phenomenon is highly common,
but the association degree between code smell pairs is weak. Code smells related to large
size and high complexity exhibit a higher degree of co-occurrences. Third, smelly files are
more likely to change than smell-free files, whereas not all smell types are likely to cause
equal change sizes in the code base. Fourth, smelly files are more vulnerable to faults than
smell-free files, and 86% of smelly files are more likely to manifest more faults than other
files. Hence, developers should be aware of the existence of code smells in their web appli-
cations and consider detecting and refactoring them from their code bases, using appropri-
ate tools.

 * Ali Ouni
 ali.ouni@etsmtl.ca

 Narjes Bessghaier
 narjes.bessghaier.1@ens.etsmtl.ca

 Mohamed Wiem Mkaouer
 mwmvse@rit.edu

1 ETS Montreal, University of Quebec, QC, Montreal, Canada
2 Rochester Institute of Technology, NY, Rochester, USA

http://orcid.org/0000-0003-4708-0362
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-021-09567-w&domain=pdf

 Software Quality Journal

1 3

1 Introduction

The growing importance and popularity of web applications (web apps) have increased in
recent years. Such popularity led to an extremely congested web development market and
strong competition that allured many developers to build quickly web apps while evolving
continuously to meet the needs of users. As a consequence, such popularity has raised more
concerns about the quality of the services provided. Web apps are characterized by their
inherent heterogeneous nature in (1) target platforms as web apps are usually split into their
client and server sides, and (2) formalisms as web apps are typically built with a mixture of
programming and formatting languages. Such heterogeneity makes the evolution of web apps
unique and different from traditional software Rossi et al. (2007); Kienle and Distante (2014).

As web technology demand rises, strong emphasis is put on identifying and enhancing
portions of the code that may suffer from bad programming or design practices. Like any
software, web applications can contain design flaws known as code smells Fowler (1999).
Such code smells often lead to errors in execution, increased use of resources, and addi-
tional maintenance. Smelly code also increases the developer’s inability to grasp the evolv-
ing design of the system quickly Fowler (1999); Ouni et al. (2016, 2015a, 2015b, 2017);
Saidani et al. (2021); Hamdi et al. (2021). Usually, this pressure would affect the project
being developed and lead to technical debts.

To investigate the effect of code smells, researchers have studied the size of code
change that developers need to perform in smelly code than non-smelly code. A gener-
ally accepted assumption in many different programming languages entails that smelly
files are more subject to change than others Khomh et al. (2009, 2012); Palomba et al.
(2017, 2018b, 2019). Code smells are also considered to have a significant effect on code
maintainability, vulnerabilities and potential failures. Bugs or faults typically lead to unpre-
dictable actions of the program and are commonly introduced by a change in the source
code or by external artifacts (e.g., API) Rodríguez-Pérez et al. (2020). Tassey Planning
(2002) estimated that fault fixing takes up to 80% of the program’s overall cost. Research-
ers are, therefore, keen to find and reduce those deficiencies as much as possible. Other
studies examined the lifespan of faults Saboury et al. (2017), the association between code
smells and faults Muse et al. (2020) and the impact of code smells on the fault-proneness
Palomba et al. (2018b); Khomh et al. (2012) in traditional object-oriented (OO) applica-
tions. Some of the results highlighted that 1) smelly files are more vulnerable to faults than
other files, 2) traditional code smells tend to co-occur with faults, and 3) faults are more
persistent in code experiencing smells.

Understanding and investigating code smells, in web apps, is challenging given the
differences from traditional OO applications. Indeed, in web applications, code smells
and faults could impact any of the tiers in the server side, leading to server crashes and
eventual performance issues in the client side. To the best of our knowledge, little is
known about the impact of code smells in web applications. Therefore, as the first step
toward a thorough and comprehensive analysis of web applications’ quality, we focus
on the server side vulnerability to code smells by analyzing the code of one of the most
popular web programming languages, PHP. C3.1: Server-side applications share sev-
eral technological aspects with other traditional applications, while they differ in other
aspects. On the one hand, server-side apps typically rely on web services available to
a broader range of users compared to traditional applications that are single-users. On
the other hand, server-side applications intensively consume networking, security, and
authentication computing resources to establish server connections. Besides, server-side

Software Quality Journal

1 3

applications are in permanent interaction with remote storage resources (databases,
files), unlike traditional applications which often reside on the client machine. The
intensive data processing in server-side applications might require more coding and
maintenance efforts, motivating us to dig into these application’s quality evaluation.

While our previous study Bessghaier et al. (2020) explored the diffuseness and
impact of code smells in the server side, it is conducted on a limited set of projects,
which hinders the scalability of our previous findings. Moreover, the co-occurrence of
smells, and their corresponding impact on the code fault-proneness was not investigated.
In this paper, we extend and build on top of our previous work Bessghaier et al. (2020).
More specifically, we conduct an empirical study on 430 releases from 10 open source
web applications, written in PHP, being the pioneering web programming language
Statistics (2020). We aim at investigating the diffuseness and effect of code smells on
server side source code maintainability in a qualitative and quantitative way. In particu-
lar, this extension consists of the following ways :

1. We extend our study by collecting a larger dataset that consists of 430 releases from 10
open source long lived web applications to gain better generalizability of our results.

2. We investigate the phenomenon of code smells co-occurrences. The identification of
smell co-occurrence patterns can be useful to build practical co-occurrence-aware code
smell detection tools and refactoring recommendation systems.

3. In addition to the analysis of the impact of code smells on the change-proneness per-
formed in our previous research Bessghaier et al. (2020), we analyze the effect of code
smells on the code change frequency. The aim is to measure how frequently smelly files
are subject to updates compared to non-smelly files.

4. We investigate the impact of code smells on the fault-proneness to analyze whether
smelly files are more prone to faults than smell-free files and how longitudinally, these
files are prone to faults.

5. We provide a comprehensive replication package for future extensions and replications
and foster research on code smells in web-based software systems Dataset (2020).

Our empirical study delivers several findings, (1) the majority of code smells are highly
diffused throughout the studied web applications evolution. We have 10 code smells
impacting more than 50% of the studied releases; (2) code smells frequently co-occur,
i.e., a file is likely to contain more than one instance of a smell. For example, the High
Method Complexity smell often co-occurs with nine other code smells such as Exces-
sive Method length and Excessive Parameter List; (3) consistent with prior research, we
found that smelly files are likely to undergo more change size than other files. We also
examined the impact of each type of code smells on the change-proneness, and found
that each code smell has its impact depending on the application context; (4) faults are
shown to persevere in smelly code rather than non-smelly code. After code smells intro-
duction, six faults are estimated to be introduced in smelly files against only one fault
before smells appear. A high rate of change- and fault-proneness may result in signifi-
cant maintenance activities that could affect the system’s efficiency.

The rest of the paper is organized as follows. The related literature is discussed in
Sect. 2. Section 3 describes our empirical study design. Section 4 presents the analysis
of our research questions, while we discuss the implications of our study in Sect. 5. We
discuss the threats to validity of our study in Sect. 6. Finally, we conclude and discuss
our future research directions in Sect. 7.

 Software Quality Journal

1 3

2 Related work

2.1 Code smells diffuseness and evolution

Unlike other OO software systems, there is little research in the field of code smells in
web-based applications. There is, however, little knowledge of code smells in web applica-
tions. Rio and Abreu (2019) recently examined the propagation of six types of code smells
in 4 web applications using an existing PHP code detection tool PHPMD1. The results
show different rates of survival of each type of code smell across the systems being stud-
ied. Code smells that affect coupled software components are the most persistent, and their
rate of removal is low. Palomba et al. (2018b) investigated the relationship between the dif-
fuseness of code smells with the class size (LOC) in traditional Java OO software systems.
Code smells belonging to components of large and complex code are known to be the most
persistent. Each of these code smells represents poor coding practices that developers tend
to perpetrate frequently. The authors also evaluated the effect of the characteristics of a
program on the frequency of smells (e.g., number of classes, number of methods, and lines
of code LOC). The findings illustrate that code smells reflecting the complexity of code
components such as Long method and complex class are often diffused in large systems.

Similar results are witnessed by Olbrich et al. (2009) when analyzing the evolution of
God Class, and Shotgun Surgery code smells in two open-source projects. The findings
underlined how code smells diffuseness rate is not constant, suggesting multiple introduc-
tions and removals. Tufano et al. (2015) have pointed out that poor coding practices are
often performed without the developers’ knowledge. Chatzigeorgiou and Manakos (2010)
investigated the diffusion of Long Method, Feature Envy, and State Checking code smells
in 24 releases of two Java projects (JFlex, and JFreeChart). Findings indicate that the num-
ber of Long Method code smells instances increases as the system evolves. Unlike the Fea-
ture Envy and State Checking, which had the same occurrence rate during the period under
study.

2.2 Code smells co‑occurrence

Other studies have investigated the co-occurrence of code smells in OO software sys-
tems. Palomba et al. (2017) adopted association rule mining technique on 13 smells types
to identify common co-occurring pairs. They found six (6) pairs of code smells that tend
to co-occur within the same code component. Recently, Palomba et al. (2018a) comple-
mented their previous research by providing insights into a large-scale analysis on how co-
occurring pairs reside in the system, and how developers manage to eliminate co-existing
pairs. They tracked pairs of smells that lived in at least 10% of classes along with the sys-
tem evolution. For example, Long Method also affects 38% of classes affected by Spaghetti
code. Similarly, Garg et al. (2016) measured the percentages of instances of smells that
occur in a class, finding that traditional smells such as Feature Envy and Data clumps coex-
ist. Moreover, Fontana et al. (2015) relied on the percentages of the same class smell types
to identify the most common pairs. More recently, Muse et al. (2020) also investigated the
coexisting phenomenon between SQL and code smells in Java data-intensive programs.
The authors applied the Apriori rule-mining algorithm to produce the pairs of frequent

1 https:// phpmd. org/

https://phpmd.org/

Software Quality Journal

1 3

smells that portray an SQL and a traditional code smell. The results stressed that SQL and
traditional smells can co-occur within the system but are weakly related, which decreases
the probability of a causality relationship.

2.3 Impact of code smells on change‑proneness

Olbrich et al. (2010) performed an exploratory investigation into the effect of the God
and Brain smells, on the change-proneness and on the code churns of smelly and non-
smelly files. A change frequency metric was developed to measure the number of commits
in which the code was updated by developers. The findings showed that smelly files are
more susceptible to regular code changes and are more likely to experience more change
size. An additional study standardizing the size of God and Brain classes demonstrated
that those two classes are less subject to changes. An empirical analysis was conducted by
Khomh et al. (2009) on the impact of 9 code smells on the change-proneness of 13 Azureus
and Eclipse releases. The results showed that smelly classes are subject to regular code
changes (averaging 8 times for smelly files). The authors also investigated the effect of dif-
ferent types of smells on the change-proneness, and found that the more instances of smell
a class has, the more it is exposed to changes. Different forms of code smells may also
lead to more changes than others. Later, Khomh et al. (2012) examined the effect of code
smells on the change-proneness of 54 releases of four projects. The findings support previ-
ous findings that classes encountering code smells are more susceptible to code changes
Khomh et al. (2012). These findings were also confirmed recently by Spadini et al. (2018),
who found that further code changes result from the existence of test smells, which may
lead to faults in the production code.

2.4 Impact of code smells on fault‑proneness

The fault-proneness reflects the extent to which a class is susceptible to become faulty
over time. The ongoing changes in a system pertaining to different maintenance activities
may increase the software complexity, which could create difficulties for developers and
practitioners to understand the evolving design. As a result, the system may become more
vulnerable to faults. A fault, bug, defect, or error represents a code deficiency leading to
an erroneous behavior. According to IEEE Group et al. (2010), a defect represents “an
imperfection or deficiency in a work product where that work product does not meet its
requirements or specifications and needs to be either repaired or replaced”. As suggested
by Rodríguez-Pérez et al. (2020), some of these faults may be the reason for miscommuni-
cation between team members, incorrect requirements, or unexplained new changes.

There have been many studies focusing on analyzing how faults are introduced into the
system. Most works assume that a fault is typically introduced due to non-appropriate code
changes that are generally recorded in the version control systems (VCS). Saboury et al.
(2017); Spadini et al. (2018); Palomba et al. (2018b, 2019, 2018a). Specifically, Śliwerski
et al. (2005) built their fault-tracking algorithm, SZZ, on the basis of an approach claiming
that the last change (i.e., the first change per order of introduction in the code) that touched
the fixed code is responsible for the introduction of the fault. In this case, the last change
applies to the Fault-Inducing Commit (FIC), in which the fault was first added. If a devel-
oper fixes a fault, the Fault-Fixing Commit (FFC) will trigger a change in the faulty code
called the fixing change. Any fixing change is attached to a descriptive commit message
expressing “a change is made to fix the fault#ID”. All the commits between FIC and FFC

 Software Quality Journal

1 3

are holders of a particular fault and are known as the Commits Exhibiting a Fault (CEF)
Rodríguez-Pérez et al. (2020).

Since SZZ is regarded as the de-facto standard for faults localization, many revisited
algorithms have been proposed since the SZZ was established Kim et al. (2006); Williams
and Spacco (2008); Borg et al. (2019); Lenarduzzi et al. (2020); and several studies have
used these SZZ revisions to detect faults and analyze the effect of code smells on fault
occurrences Zimmermann et al. (2007); Da Costa et al. (2016); Rodríguez-Pérez et al.
(2020); Saboury et al. (2017); Muse et al. (2020); Palomba et al. (2018b). Saboury et al.
(2017) examined the effect of 12 JavaScript smells on the fault-proneness. The aim is to
use the survival analysis method to capture a longitudinal pattern of faults survivability
in the studied systems. The obtained results showed that non-smelly files are less likely to
spread errors by 65%. The study also captured a quantitative effect on the faults of some
system’s characteristics like the LOC, code churn, and the number of Previous Bugs. The
number of previous bugs that reflect the number of fault-fixing change trials (before the
FFC) could endanger the system to more faults and increase their rate of growth. Muse
et al. (2020), examined the correlation between traditional code and SQL smells with faults
in Java programs. The study indicates that faults are not statistically proven to be corre-
lated with SQL smells, unlike traditional code smells. Given the fact that some of the SQL
smells like Implicit Columns contribute to software faults, there was no correlation in the
fault-inducing commits. Code smells as Complex Class, on the contrary, have shown a
stronger correlation. A broad analytical analysis was performed on over 395 releases of
30 open source projects by Palomba et al. (2018b). The investigation into the effect on the
fault-proneness of 13 kinds of code smells reported that smelly files are three times more
prone to faults than non-smelly files. Further research indicated that only 21% of faults are
introduced before smells are introduced in a class. Besides, classes affected with two or
three code smells are likely to witness more fault-fixing activities.

In our study, we build on top of these studies to investigate fault-proneness and extend
them in the following ways.

– We improve prior approaches by normalizing the number of faults with respect to the
history length before and after introducing smells which could impact the number of
faults.

– We studied the propagation of faults in smelly and non-smelly files considering the
commits-exhibiting-fault. This technique serves to measure the number of commits that
indicate a fault until it is fixed. No prior study investigated this aspect, which we believe
is important to get an idea on how long it takes to fix or identify the existence of a fault
in the code.

– We also explore the code churn needed to fix a fault in smelly and non-smelly files to
understand how code smells could affect the number of code changes needed to fix a
fault, which has not been addressed in previous studies.

Previous studies have shown a potential negative impact of code smells existence in a variety
of languages, including Java, JavaScript, and SQL. Moreover, these studies showed the cor-
relation between higher levels of proneness to fault with the frequency and co-occurrence of
smells. However, there is a clear lack of studies targeting the impact of smells in web applica-
tions, being one of the largest parts of the current software industry, which are characterized
by their inherent heterogeneity in the target platform, formalisms, architectures and program-
ming languages. We design our empirical investigation to cover this gap in the literature, as a

Software Quality Journal

1 3

first study specialized in the diffuseness and impact of code smells in web applications server
side code. The following section details our study design.

3 Empirical study design

The goal of our study is to investigate the (i) diffuseness, (ii) co-occurrence, and (iii)
impact of code smells in the server side. Figure 1 shows an overview of our research meth-
odology. More specifically, our study aims at addressing the following research questions:

– RQ1: To what extent are code smells diffused in web-apps server side? We examine
the extent to which code components are affected by code smells throughout the applica-
tion’s development history. This research question would provide insight into the types
of smells that persist in the system, and how often the smells occur.

– RQ2: What types of code smells tend to co-occur together? We analyzed 107,228
affected classes to investigate the frequency at which code components are susceptible to be
affected by particular pairs of code smells. We examine the co-occurrences of code smells at
the class level using the association rules-mining algorithm “Apriori” Agrawal et al. (1994).

– RQ3: Are smelly files more prone to code changes than non-smelly files? We aim
to determine the weight of code churn that smelly files undergo with the existence of
code smells as compared to non-smelly files. The following null hypothesis is under
test: H30 ∶ Smelly files are not more prone to change during the software evolution as
compared to non-smelly files.

– RQ4: Do different types of code smells exhibit different impact on the level of
change-proneness? We are particularly interested in investigating which types of code
smells are more prone to changes than others. By replying to the following null hypoth-
esis, we examine how code smells contribute differently to the change size: H40 ∶
Smelly files undergo the same churn when exhibiting different types of code smells.

– RQ5: Are smelly files more prone to faults than non-smelly files? We aim to
investigate the extent to which code smells lead to more faults in the code by verify-
ing this null hypothesis: H50 ∶ Smelly and non-smelly files undergo the same number
of fault-fixing changes. Previous studies have demonstrated the tight relation between

Fig. 1 Overview of the empirical study

 Software Quality Journal

1 3

the existence of code smells in traditional OO applications and the fault-proneness
Palomba et al. (2018b); Khomh et al. (2012). We are interested in investigating the
potential effects of smells on the fault-proneness of server side web applications.

3.1 Replication package

Our comprehensive replication package is publicly available for future replications and
extensions Dataset (2020).

3.2 Project selection

To answer our research questions, we selected the subject projects for our study following a
number of selection criteria.

Step 1: We use the GitHub advanced search engine to find projects written in PHP and
collect the repositories with over 1,000 stars. This step resulted in 642 repositories.
Step 2: We removed all non-web-based software projects, and retained those with over
30 releases and five years of history. A collection of 54 repositories met those criteria.
We aim at studying a representative number of releases per project to draw statistical
evidence from the studied samples.
Step 3: We cloned the identified repositories in phase 2 and used the GitHub API2 to
return the projects with over 10,000 commits. The intent is to select the most active
projects in terms of the highest number of commits (more than 10k commits) and the
significant history length (more than 5 years)to allow statistical analysis of the obtained
results. We ended up with 47 projects.
Step 4: Among the 47 projects found in step 3, we randomly selected a sample of 10
projects for our current study. This sample is twice as large as our initial study Bessghaier
et al. (2020).

Overall, we mined a total of 430 releases from 10 popular open-source PHP web-based
applications from different domains. The list of considered projects is the following:

– PhpMyAdmin3 is a well-known web application mostly written in PHP to administer
MySQL and MariaDB.

– Joomla4 is a Content Management System (CMS) that allows us to create and publish
powerful applications.

– WordPress5 is a popular open-source CMS to build websites powered by thousands of
plugins.

– Piwik6 is a powerful web analytic application devoted to track users’ visits to other
websites for analysis.

2 https:// devel oper. github. com/ v3/
3 https:// github. com/ phpmy Admin/ phpmy admin
4 https:// github. com/ joomla/ joomla- cms
5 https:// github. com/ WordP ress/ WordP ress
6 https:// github. com/ matomo- org/ matomo

https://developer.github.com/v3/
https://github.com/phpmyAdmin/phpmyadmin
https://github.com/joomla/joomla-cms
https://github.com/WordPress/WordPress
https://github.com/matomo-org/matomo

Software Quality Journal

1 3

– Laravel7 is a server side PHP framework used to alleviate the cost of web development
with powerful syntax and tools required for large applications.

– CakePHP8 is a robust development framework for PHP applications.
– Moodle9 is a free, open-source e-learning management system (LMS) written in PHP.

It is used basically for distance education, allowing trainers to create private websites.
– Symfony10 is a PHP web-based application development offering a set of reusable PHP

components. Symfony is used by popular PHP projects such as Drupal and Magento.
– CodeIgniter11 is a PHP application development framework, destined to write applica-

tions faster by providing a rich set of commonly used libraries.
– PhpBB12 is a free bulletin board software full of unique user-created extensions to eas-

ily create forums.

We chose applications with different sizes ranging from 12 to 703 KLOCs. As presented
in Table 1, the studied projects belong to different application domains and are actively
engineered for 9 to 19 years. Table 1 reports the number of studied releases and the number
of stars on GitHub, and we count the size of the application in terms of the number of PHP
classes and KLOCs. We also provided the number of total commits and examined code
smells in our study.

3.3 Analysis method

In this subsection, we describe the analysis method we used to address each of our defined
research questions.

Table 1 The studied systems statistics

Name Releases Period Stars # Classes KLOCs # Smells # Commits

phpMyAdmin 55 2014-2020 4.7k 30-645 228-328 60,695 118,402
Joomla 34 2011-2019 3.4k 1,102-2,631 271-662 75,616 41,287
WordPress 74 2005-2019 13.4k 24-496 37-391 106,962 46,418
Piwik 38 2010-2020 12.6k 1,017-2,095 242-374 39,896 27,156
Laravel 22 2012-2020 57.3k 95-248 12-40 1,647 16,214
CakePHP 26 2011-2020 8.1k 902-3,488 201-341 23,368 42,873
Moodle 38 2011-2020 3k 3,725-11,688 295-703 71,743 153,943
Symfony 58 2011-2020 23.3k 1,466-2,159 119-183 53,622 48,759
CodeIgniter 20 2011-2019 17.9k 88-160 37-113 7,231 10,105
phpBB 65 2001-2020 1.3k 171-1,383 39-282 76,936 34,571

7 https:// github. com/ larav el/ larav el
8 https:// github. com/ cakep hp/ cakep hp
9 https:// github. com/ moodle/ moodle
10 https:// github. com/ symfo ny/ symfo ny
11 https:// github. com/ bcit- ci/ CodeI gniter
12 https:// github. com/ phpbb/ phpbb

https://github.com/laravel/laravel
https://github.com/cakephp/cakephp
https://github.com/moodle/moodle
https://github.com/symfony/symfony
https://github.com/bcit-ci/CodeIgniter
https://github.com/phpbb/phpbb

 Software Quality Journal

1 3

Table 2 List of code smells considered in our study

Code smell Description

Excessive Number Of Children (ENOC) A class with an excessive number of sub-classes generally leads
to a very tightly coupled software hierarchy that is hard to
maintain Rio and Abreu (2019); PHPMD (2021).

Excessive Depth Of Inheritance (EDOI) A class with a profound inheritance tree can prompt an unmain-
tainable code as the coupling would increment Rio and Abreu
(2019); PHPMD (2021).

High Coupling (HC) Too many dependencies make a class harder to keep up and
develop Rio and Abreu (2019); Fowler (1999); Mannan et al.
(2016); PHPMD (2021).

Empty Catch Block(ECB) Fixing an execution error of an obscure special case type will
require more endeavors to comprehend the blunder condition
PHPMD (2021).

Goto Statement (GTS) Goto makes the logic of an application difficult to comprehend
PHPMD (2021).

High Method Complexity (HMC) The method-level cyclomatic complexity represents the number
of potential executions paths (e.g., if, for, while). The higher
the number of paths, the higher the number of experiments
expected to test all the distinctive execution ways PHPMD
(2021); Hecht et al. (2015).

High NPath Complexity (HNPC) The NPath intricacy is the number of settled if/else joints, which
would diminish the clarity of the code and cause testing issues
PHPMD (2021).

Excessive Method Length (EML) When a method surpasses 100 NCLOC, it is viewed as a large
method that does too much. These methods will probably wind
up processing information uniquely in contrast to what their
setting recommends until they become hard to comprehend and
keep up Rio and Abreu (2019); PHPMD (2021); Hecht et al.
(2015); Mannan et al. (2016); Delchev and Harun (2015).

Excessive Class Length (ECL) Enormous classes are a decent suspect for refactoring, as their
size depicts a hurdle to oversee effectively Rio and Abreu
(2019); PHPMD (2021); Mannan et al. (2016); Liu and Zhang
(2017).

Excessive Parameter List (EPL) A long parameter list can show that a method is doing an exces-
sive number of various things, which makes it harder to com-
prehend its conduct Rio and Abreu (2019); PHPMD (2021);
Martin (2009); Delchev and Harun (2015).

Too Many Public Methods (TMPM) An enormous number of public methods demonstrates that the
class does not protect its information embodied. Thus, chang-
ing the inward conduct of the class requires new endeavors
not to risk harming some dependencies. In practice, we cannot
restrain the number of public methods. Just what could be
uncovered ought to be open. On the off chance that external
classes are broadly getting to these methods, they should be
moved to decrease the coupling PHPMD (2021).

Too Many Methods (TMM) The Too Many Methods code practice is the side effect of a class
that contains countless methods that generally do not have a
place among its responsibilities and thus, diminishes the cohe-
sion level PHPMD (2021).

Software Quality Journal

1 3

Code smells diffuseness (RQ1) We considered 12 common code smell instances that exist
in server side web application’s code to prepare our benchmark. The considered 12 code
smells types were widely studied in prior studies Delchev and Harun (2015); Mannan et al.
(2016); Rio and Abreu (2019); Liu and Zhang (2017); Hecht et al. (2015). To detect code
smells, we employed PHPMD (2021), a widely used code smell detection tool dedicated
to PHP-based web applications Rio and Abreu (2019); Mon et al. (2019); Mon and Myo
(2015); Yulianto and Liem (2014). It is worth noting that we focused on common class-level
and method-level code smells that affect the overall software quality. Although PHPMD
supports the identification of 36 smell types, we discarded smells related to low-level viola-
tion which are likely to have negligible or no impact such as naming conventions (e.g., short
names), Unused Local Variable smell, calling the function var_dump() in the produc-
tion code, and other simple documentation-related smells. Table 2 presents and provides the
definitions of each code smell type.

For each class Ci in a release Rj , we compute the number of each code smell type
instances it contains. Then, we analyze the number of affected classes and releases by each
code smell type. We also assess code smells diffuseness per KLOC to better position the
number of smells with respect to size.

Code smells co‑occurrences (RQ2) We conduct a preliminary analysis following Palomba
et al. (2018a) approach that assesses the co-occurrence score of a pair of smell types, Sti
and Stj as follows:

where Sti ∩ Stj represents the number of co-occurrences of two distinct types of smells. It
is worth mentioning that the co-occurrence(Sti, Stj) differs from co-occurrence(Stj, Sti) as
the denominator varies from Sti to Stj , i.e., the co-occurrence of Sti → Stj is not the same as
Stj → Sti.

Then, we exploit the Apriori algorithm Agrawal et al. (1994), a widely-used algorithm
for association rule mining to discover frequent item-sets. The output of the algorithm is a
set of association rules representing strongly associated item pairs, i.e., code smells in our
study. The degree of association of each rule (i.e., a pair of code smells) is evaluated using
five measures, Support Agrawal et al. (1993), Confidence Agrawal et al. (1993), Lift Brin
et al. (1997), Leverage Piatetsky-Shapiro (1991), and Conviction Brin et al. (1997).

– Support Agrawal et al. (1993): The support metric represents how much a pair of smells
(ST1 and ST2) change together in the same commit.

– Confidence Agrawal et al. (1993): The confidence implies the probability that a smell is
related to the presence of another smell with values varying from 0 to 1.

(1)co-occurrence(Sti, Stj) =
(Sti ∩ Stj) ∗ 100

Sti
, wherei ≠ j

(2)Sup(ST1 ⇒ ST2) =
ST1

⋃

ST2

Transactions
∈ {0 − 1}

(3)Conf (ST1 ⇒ ST2) =
Sup(ST1 ⇒ ST2)

Sup(ST1)
∈ {0 − 1}

 Software Quality Journal

1 3

– Lift Brin et al. (1997): The lift is used to measure the smells-dependence ratio. The
range of values for the lift is between 0 and + ∞ . When the lift value is greater than 1, it
implies that the pair of smells is highly correlated (i.e., a higher likelihood of a causal-
ity relationship).

– Leverage Piatetsky-Shapiro (1991): The leverage tests the difference between two
smells support score with values ranging from -1 to 1. A leverage of 0 indicates total
independence between both smells.

– Conviction Brin et al. (1997): measures the probability of a smell occurring without
another smell, returning a value within a range of 0 to + ∞ . When the conviction score
is equal to 1, this implies that the smells are independent.

Moreover, we use the Chi-squared and the Cramer’s V to assess the degree of associa-
tion between the code smells. The Chi-squared test is a statistic used to evaluate the impor-
tance of the size of variation in the same population between two categorical variables (in
our case, the combined data set). The test aims to assess the following null hypothesis:
−H20 ∶ Code smells occur independently of each other. The Cramer’s V is an effect size
test carried out on a Chi-squared Pearson test to assess the strength of the relation. The
test formula is described in Eq. 7 and includes the sample size (n), the chi-squared value
denoted by X2, the number of rows (r) and columns (c) representing the contingency table’s
distinct values.

Furthermore, since some code smells are by definition related to size, we conduct an
additional experiment to examine the correlation between the class size (LOC) and the
number of code smells in small, medium, and large classes. We consider the lower and
upper quartiles of the box plot representing the distribution of class sizes as thresholds (60
and 300, respectively). This test indicates how likely is the number of code smells occur-
rences is influenced by the class size by measuring the correlation using the Kendall rank
correlation coefficient test Kendall (1938). A coefficient in the interval [0, 0.199] is consid-
ered very weak, 0.2− >0.399 is weak, [0.4, 0.599] is moderate, [0.6, 0.799] is strong, and
[0.8, 1] is very strong.

Impact of code smells on the change‑proneness (RQ3) To study the impact of code
smells on the change-proneness, we mine the impact history of each project using the git
versioning system. We track all changed PHP files in all commits between two consecutive
releases. Then, we use the following git command to extract the number of modifications
each modified file has undergone:

$ git show –stat –no-commit-id –oneline -r SHA “*.php”

(4)Lift(ST1 ⇒ ST2) ∶
Sup(ST1 ⇒ ST2)

Sup(ST1) ∗ Sup(ST2)
in{0 − 1}

(5)Leverage(ST1 ⇒ ST2) = Sup(ST1 ⇒ ST2) − (Sup(ST1)Sup(ST2))in{0 − 1}

(6)Conviction(ST1 ⇒ ST2) = (1 − Sup(ST2))∕(1 − Conf (ST1 ⇒ ST2))in{0 − 1}

(7)Cramer�sV =

√

X2

n ∗ (r − 1)(c − 1)

Software Quality Journal

1 3

where the command git show shows several details related to many objects like tags
and commits; –stat shows the amount of deleted and inserted changes; –no-commit-
id suppresses the commit ID output. –oneline gives just one line per commit; -r is used
to recurse into sub-trees; SHA is the commit hash, and “*.php” returns only changes
applied on php files. Then, we identify whether the returned files are smelly or non-smelly.
Afterward, we calculate using Eq. 8, the change-proneness of a changed class Ci as the
amount of the changes made in all commits between two consecutive releases Rj−1 and Rj.

where n is the number of commits between Rj−1 and Rj . The function churn(c, comi) returns
the code churn as the number of added, removed and modified lines of code in the class Ci
in the commit comi using the GitHub API13.

After extracting all data, we use statistical analysis and the beanplot representation
Kampstra (2008) to compare the change-proneness of smelly and non-smelly classes.
A beanplot expands the representation of the boxplot by displaying the density of the
distribution of data and individual observations. To assess H30 , we check if there is a
significant difference between both groups, i.e., smelly and non-smelly. Specifically,
we apply the nonparametric Mann–Whitney U-test Conover (1998) to check the dif-
ferences between our two groups with a confidence level of 95% (p-value <0.05). The
Mann–Whitney is used to evaluate the alternative hypothesis stating how likely one sam-
ple exhibits dominance over the other sample. We consolidate the test by measuring the
size of the Cliff-delta non-parametric effect test. The effect size is considered negligible
for d <0.147, small for d <0.33, medium for d <474, and large for d >=0.47.

It is worth noting that a class is considered smelly if it has at least one code smell
instance. We narrowed the distance between smelly and non-smelly groups to investi-
gate the change-proneness phenomenon considering the studied smells. Furthermore, we
measure the Change-frequency metric to assess how many times smelly files are prone to
updates compared to non-smelly files. To this end, we count the number of commits where
an update has been observed by a single modified file fi between two consecutive releases.

Furthermore, we measure the correlation between the class change size (Churn) and its
LOC to examine the effect of the LOC on the class change size using the Kendall correla-
tion test. To this end, we cluster the sizes of classes participating in code smells based on
the aforementioned defined quartiles, and for each class, we count its churn. Consequently,
we have size-related code smells such as the Excessive Class Length in large classes.

Impact of code smells types on the change‑proneness (RQ4) We measure the effect of
code smells on the change-proneness in terms of their frequency count. In each release,
we quantify the number of occurrences of each smell in the smelly groups. For each pro-
ject, we measure the impact of each smell type in terms of the correlation score between
(1) the frequency count of each smell type STi , and (2) the class state {0 or 1} that rep-
resents whether a class has changed between two releases Rj−1 → Rj or not. In order to
evaluate the effect of each smell type on the change-proneness statistically, we opted for a
logistic regression test Hosmer et al. (2000), similar to Khomh et al. (2009), to assess the

(8)Change-proneness(c, rj) =

i=n
∑

i=1

churn(c, comi)

13 https:// devel oper. github. com/ v3/

https://developer.github.com/v3/

 Software Quality Journal

1 3

null hypothesis H40 claiming that classes experience the same change size for all types
of smells. The logistic regression should predict if the class affected by particular smells
would change. To assess a class change based on a set of smells, a class represents the Ci
dependent variable that would change if one of the STj (independent variable) smell types
also changes. For a logistic model, only two values may be taken from the dependent
variable (i.e., changed=1, not changed=0). The formula of the logistic model is defined
as follows:

where P is the probability that a class will change, CP is the class change proneness which
could be {0,1}, n is the number of observations, and bj is the code smell number of type
STj . For each smell type detected in our benchmark, we apply our logistic regression
model. Then, we count the number of times that the p-value of the smell is significant (the
likelihood is nearer to 1)

Impact of code smells on the fault‑proneness (RQ5) In this experiment, we want to
investigate whether faults are related to code smells in a class or not. Regardless of the type
of smells, we want to study whether code smells could lead to faults. As reported in Fig. 2,
our investigation is based on the logic of the SZZ algorithm Śliwerski et al. (2005) since
the SZZ is regarded as the de-facto standard for faults localization, and many studies have
employed it in their investigations Saboury et al. (2017); Palomba et al. (2018b); Muse
et al. (2020). The SZZ consists of linking the historical changes in the VCS with the Issue
Tracking System (ITS).

It is important to note that faults could appear before a code smell exists in a source file,
which may increase the fault-proneness rate of smelly files. Therefore, we quantify our var-
iables of interest (fault-fixing commits, commits exhibiting a fault, and code churn) after
the introduction of code smells into the code base. Besides, we observed different results of
our studied phenomenon with respect to the class size (LOC). Therefore, our classes were
divided into small, medium, and large considering the lower and upper quartiles of the
box plot representing the distribution of sizes as thresholds (60 and 300). In particular, we
assess various fault-related behaviors as follows:

1. We check whether faults in fault-inducing commits (i.e., where a fault is firstborn in
the codebase) always occur before or after the smells are added. Specifically, for each
class Ci , we detect and evaluate the number of fault-inducing commits before and after
introducing smells between two consecutive releases Rj and Rj + 1 . For example, assume
that between Rj − 1 and Rj , class C was affected by at least one smell type. The smell was

(9)P(Ci) =
e(CP+

∑n

1
bj×STj)

1 + e(CP+
∑n

1
bj×STj)

∈ [0, 1]

Fig. 2 A fault life cycle in a system

Software Quality Journal

1 3

then removed between Rj and Rj + 1 releases. Lastly, between releases Rj + 1 and Rj + 2 ,
the smell was reintroduced. We measured class C’s fault-proneness when it was smelly
by summing up the number of fault-inducing commits in the periods between Rj − 1 and
Rj and between Rj + 1 and Rj + 2 . Similarly, when it was not smelly, we computed the
fault-proneness of class C by measuring the number of fault-inducing commits in the
period between Rj and Rj + 1 . We used a beanplot representation to visualize the size of
the difference between our two compared populations (before smells, and after smells
are introduced) and complemented our investigation with the Mann–Whitney and Cliff’s
delta statistical tests to assess how significant is the difference.

2. We normalize the number of fault-inducing commits by the number of effective com-
mits in a release Rj to reflect the possible impact of the history length on the number
of faults, i.e., the history length before a code smell is introduced in a class could be
significantly smaller than the history after the code smell is introduced. We considered
the number of effective commits between two releases instead of the number of days to
capture the lifespan of a code smell better as adopted by Habchi et al. (2019). Indeed,
the number of days can over-or under-estimate the lifespan of a code smell in a file if
such a file experiences very few or too many commits. This fine-grained analysis allows
capturing better the lifespan of a code smell Habchi et al. (2019). For each release Rj
tag we extract its SHA using the PyDriller. Then, we use the Commits API to extract
the total number of commits for Rj.

3. We assess the proportions of smelly and non-smelly classes experiencing at least one
fault-fixing activity. Specifically, we compute the fault-proneness of class Ci in terms of
the number of fault-fixing commits between two consecutive releases Rj and Rj+1 . We
compare the difference of the fault-proneness between our two sets of smelly and non-
smelly classes using the nonparametric Mann–Whitney U-test Conover (1998) to inves-
tigate the validity of this null hypothesis −H50 ∶ smelly and non-smelly files undergo the
same number of fault-fixing commits. We test the statistical significance at a confidence
level of 95%. We also compute the effect size test Cliff’s Delta (d) Grissom and Kim
(2005) to assess the magnitude of the difference between the two distributions.

4. We assess the propagation of faults in smelly and non-smelly files to test the extent to
which faults persist in a class participating in code smells. To this end, we compute for
each class Ci , the number of commits exhibiting a particular fault14 .

5. We examine code churn needed for fixing faults in classes participating in code smells.
We measure the code churn (added, removed, and modified lines of code) used to fix the
fault in the fault-fixing commit for each class Ci . It is necessary to note, however, that the
measured code churn of the defective code fragment may not possibly be a smelly code
fragment. Thus, we did not fine-grain our granularity level and distinguished between
faults occurring at the class or method-level.

To collect our data for RQ5, we first used the GitHub API issue tracker15 to acquire the
issue type (i.e., fault, enhancement, etc.) and the issue state (i.e., closed, open).

The issue state “closed” indicates that an issue has been satisfied in the current
commit, whereas the issue type “bug” allows us to distinguish between a bug and

14 The commits exhibiting faults are the commits that touched the faulty code excluding the fault-inducing
commit, which is considered the last change (cf. Sect. 2.4).
15 https:// devel oper. github. com/ v3/

https://developer.github.com/v3/

 Software Quality Journal

1 3

non-bug-related issues such as “enhancements”. We select the commits of all closed
bug-labeled issues. Then, we use PyDriller Spadini et al. (2018), a python framework
to interact with GitHub repositories using git commands, to identify the fault-inducing
commits, specific to a given issue. Several recent studies Asmare Muse et al. (2020);
Lenarduzzi et al. (2019); Pecorelli et al. (2020) have relied on PyDriller to mine the
project’s control version system. First, to identify fault-fixing commits, we used 29 key-
words variations (e.g., fix, fixed, fixes, bug, bugs, error, errors, issue, fault, solve, close)
indicating possible fixing of code faults. Our set of keywords were used in prior studies
Muse et al. (2020); Palomba et al. (2019); Saboury et al. (2017); Spadini et al. (2018)
to identify fault-fixing commits. Antoniol et al. (2008) indicated that those keywords
are highly associated with fault-fixing commits. Table 3 presents the percentages of the
used keywords variations by developers when performing a fault-fixing change.

Our tool traverses all fault-fixing commits between two releases Rj−1 and Rj and
searches for the keywords in the commits messages. If a keyword is identified, the tool
examines if the returned commit has the issue state “closed” and the label “bug” and
separates it as a fault-fixing commit. Furthermore, PyDriller implements the logic of
the SZZ algorithm Śliwerski et al. (2005), which consists of blaming (i.e., applies the
git blame command) a modified file fi to get the list of commits that have previously
involved fi . Then, for all the modified files, we separate the smelly from the non-smelly
ones. Hence, we use PyDriller to detect the fault-inducing commit(s) from a given fault-
fixing commit.

Note that the original version of the SZZ algorithm has its own limitations as pointed
out by Rodríguez-Pérez et al. (2018) since it could deliver false positives related to
changes in whitespaces and comments. To avoid this issue, we used the recent PyDriller
implementation of SZZ which does not blame whitespace and comments. Besides, we
only extract fault-inducing commits of fault-fixing commits that were closed and clas-
sified as a fault to restrict the threat of considering commits related to other types of
issues. Getting fault-inducing commits enables us to investigate the number of commits
aimed at fixing the faults in each class.

Table 3 Used keywords
designating fault-fixing commits

Keywords % fault-fixing
commits

fix* 76.79%
error* 7.03%
bug* 5.33%
issue* 4.37%
close* 2.96%
solve* 2.51%
fail* 0.81%
fault* 0.09%
crash* 0.05%
defect* 0.03%
Total fault-fixing commits 105,109

Software Quality Journal

1 3

4 Study results and analysis

In this section, we report and discuss the obtained results of our research questions.

4.1 RQ1: Code smells diffuseness and frequency

Figure 3 reports (i) the absolute number of code smells distributed in the studied projects,
(ii) the number of classes affected by each code smell, and (iii) the density of code smells
per KLOC using the beanplot visualization. For the sake of clarity, we aggregate the occur-
rences of each code smell into one single dataset. From the beanplots and Table 4, we
observe the presence of three major types of distributions of code smell (1) high diffuse-
ness and high frequency, (2) high diffuseness and low frequency, and (3) low diffuseness
and low frequency.

High diffuseness and high frequency The list of code smells included in this category
affect the majority of releases and frequently occur in classes. For instance, we found the
High Method Complexity smell being highly diffused and frequent, with 99% of affected

0

500

1000

1500

2000

HMC HNPC EML ECL EPL TMPM TMM ENOC EDOI HC ECB GTS

(a) Avg number of classes affected by each code smell type.

0
100
200
300
400
500
600

HMC HNPC EML ECL EPL TMPM TMM ENOC EDOI HC ECB GTS

(b) Avg number of classes affected by each code smell type.

0
10
20
30
40
50
60

HMC HNPC EML ECL EPL TMPM TMM ENOC EDOI HC ECB GTS

(c) Code smells density per KLOCs.

Fig. 3 Illustrative graphs depicting the diffuseness of code smells in the studied projects

 Software Quality Journal

1 3

releases and accounts for 41% of the total code smells instances. In particular, this smell
affects an average of 338 classes, which indicates that methods in the studied web applica-
tions tend to have a high cyclomatic complexity exceeding the threshold of 10 PHPMD
(2021). Hence, we found an average of 60 instances of the High Method Complexity smell
per KLOC. The highest number of occurrences of the High Method Complexity accounts
for 2,296 instances and is found in the project Moodle (v2.1.2). For example, the classes
lib.tcpdf.tcpdf.php and lib.moodlelib.php have the highest complexity
score of 98 in their methods closeHTMLTagHandler() and clean_param() with
an excessive length of 336 and 358 LOC, respectively. The average number of LOC for
methods with high complexity in the release 2.1.2 of Moodle is 347.

In addition, we found that the High NPath Complexity also occurs in 99% of releases,
which represents 27% of the total number of smells detected. In Moodle (v2.1.2), the
High NPath Complexity has a total of 1,383 occurrences affecting 184 classes. The two
methods closeHTMLTagHandler() and clean_param() of Moodle (v2.1.2) have
an NPath Complexity score exceeding 400. We assume that a potential causality relation-
ship could be elaborated between both code smells High Method Complexity and High
NPath Complexity.

Similarly, the Excessive Method Length smell affects 97% of releases, representing 17%
of the detected code smells instances with the highest number of occurrences of 749 found
in Moodle (v2.1.2). The diffuseness of smell instances per KLOC is depicted in Fig. 3c,
which confirms that High Method Complexity, High NPath Complexity, and Excessive
Method Length are the most diffused code smells with an average of 26, 13 and 11 instances
per KLOC, respectively.

High diffuseness and low frequency The majority (58%) of the smells examined in our
studied releases are highly diffused with a low frequency rate. These smells are diffused in

Table 4 Diffuseness of code smells in the analyzed projects in terms of percentage of affected releases,
classes and code smells

Code smell % releases % classes % of smells

High Diffuseness and High Frequency
High Method Complexity 99% 67.2% 41.6%
High NPath Complexity 99% 50.6% 27%
Excessive Method Length 97% 38.6% 17.2%
High Diffuseness and Low Frequency
Excessive Class Length 97% 12.1% 2.7%
Too Many Public Methods 90% 26% 5.2%
Excessive Parameter List 86% 3.7% 1.6%
Too Many Methods 80% 6.7% 1.3%
High Coupling 75% 7.3% 1.7%
Excessive Number Of Children 74% 3.1% ∼1%
Empty Catch Block 53% 2.6% ∼1%
Low Diffuseness and Low Frequency
Excessive Depth Of Inheritance 11% 0.8% ∼1%
Goto Statement 1% 0.05% < 0.01

Software Quality Journal

1 3

most of the studied releases, but with a limited frequency rate (number of instances). These
smells affect more than 50% of the releases. For instance, 97% of the releases are affected
by the Excessive Class Length smell, with an average of 20 affected classes having a peak
of 162 in Moodle (v3.8.1). The Too Many Public Methods smell, for example, constitutes
5% of the total number of smells and is spread over 90% of the releases, as seen in Fig. 3
and Table 4.

Additionally, the code smells Empty Catch Block and Excessive Parameter List affect
53% and 86% of the releases, respectively, with a maximum number of occurrences of 69
in Piwik (v2.17.1 and v2.18.0) and 80 in phpMyAdmin project (v4.3.9). In the method
setProperties() of the class DisplayResults.class.php, the Excessive
Parameter List has the highest occurrence number (19) of all low frequent smells. The
Excessive Parameter List is a one-metric violation smell which detects the smell straight
away. In addition, note that Wordpress, CodeIgniter, and phpMyAdmin projects do
not have any instance of the Empty Catch Block which, in total, is limited to one instance
per KLOC.

Moreover, we find that the Excessive Class Length, Too Many Public Methods, Exces-
sive Children’s Number, and the Too Many Methods smells are not commonly occurring,
up to a maximum of 7 instances per class. We also noticed that most of the smells in this
category of diffuseness are at the class level.

Low diffuseness and low frequency As shown in Fig. 3 and Table 4, smells related to
class inheritance, e.g., Excessive Depth Of Inheritance, have low diffuseness and low fre-
quency. Overall, the Excessive Depth Of Inheritance smell occurs in 469 classes, affecting
only 11% of the analyzed releases, and it accounts for almost 1% of the total number of
code smells found. Among the affected classes by this smell, 92% are in the project Moo-
dle. The highest number of occurrences is 49 in Moodle v3.0.8. Likewise, the code smell
of Goto Statement accounts for almost 1% of the total number of code smells and affects
1% of the studied releases. Table 4 presents the diffuseness of application smells, depend-
ing on the number of releases gathered. The column “% of releases affected” reflects the
number of releases affected by a specific smell. For instance, the smell of Too Many Meth-
ods affects 80% of the releases, and accounts for only 1.3% of the total number of detected
smells (482019).

To sum up, the set of code smells in the releases being examined are highly diffused.
In particular, smells related to long and complex fragments of code (i.e., High Method
Complexity, High NPath Complexity, and Excessive Method Length) have the highest
number of instances per KLOC and affect the highest number of classes. Our results are
in line with those of Palomba et al. (2018b) on Java desktop applications, where Long
method and Complex Class code smells are the most diffused. Besides, 75% of the code
smells analyzed are not frequent (i.e., a small number of occurrences per release), but
affect 63% of the studied releases. For instance, the project Moodle is the most affected
project with a highest number of instances of 9 code smells HMC, HNPC, EML, ECL,
TMPM, TMM, ENOC, HC, EDOI. By observing the diffuseness of code smells, we strive
to determine the interplay between the magnitude of the diffuseness for each smell and
the maintainability of code. Smells of highly diffuseness and frequency represent poten-
tial candidates with a high impact on the maintainability of source code. Although it
is expected that the extremely low diffused smells Excessive Depth Of Inheritance and
Goto Statement would have no major effect on the change-proneness as their diffuseness
rate is limited.

 Software Quality Journal

1 3

Summary for RQ1 Most of the code smells are diffused in the studied web applications
server sides. Mainly, the smells related to long and complex code fragments (High Method
Complexity, High NPath Complexity and Excessive Method Length) are highly diffused and
frequent, affecting more than 95% of the studied releases, and account for more than 17%
of the number of detected smells. While other types of smells such as the Excessive Depth
of Inheritance and the GoTo Statements are not diffused as they affect 11% and 1% of the
releases, respectively.

4.2 RQ2: Code smells co‑occurrence

Our initial analysis showed that multiple code smell types could affect many code elements
(classes, methods) at once. Prior studies have shown how the co-occurrence of smells could
intensify the degree of the change-proneness Abbes et al. (2011); Palomba et al. (2018a).
Indeed, an increased number of code smells may negatively impact source code maintain-
ability. As shown in Fig. 4, 39% of smelly code fragments contain only one type of smell,
while 61% of the smelly code fragments contain two or more types of code smells. It is
worth noting that our findings are consistent with prior studies on Android mobile appli-
cations et al. Palomba et al. (2019, 2018a) which found that ∼60% of Java-based Android
apps’ source code was affected by over one smell. These findings reflect the importance of
understanding the degree to which our analyzed code smells consolidate the co-occurrence
phenomenon and its effect on source code.

The goal is to investigate the extent to which the existence of a code smell in a code
fragment implies the existence of another form of code smells. Table 5 reports the absolute
number and the percentages of co-occurrences across each pair of the 12 studied code smell
types. We show the absolute number of code smells in the horizontal header, and the per-
centages in the vertical header. In each intersection cell, we report the co-occurrence score
between the pair of smell types. We highlight in bold the smell type with which the smell
of interest (in the vertical header) mostly co-occurs. For example, we find that the High
Method Complexity (HNPC) mostly co-occurs with 74.73% of the High NPath Complexity
(HMC) instances. Interestingly, we observe from Table 5 that 9 code smells (ENOC, HC,
ECB, GTS, HNPC, EML, ECL, EPL, and TMPM) also co-occur with the High Method
Complexity (HMC) smell. Indeed, this finding could be justified by our results in RQ1 since
the High Method Complexity is the highest diffused smell (99% of releases) and represents
42% of the total number of code smells in the studied projects.

Fig. 4 Code smells co-occurrence frequency in the studied releases

Software Quality Journal

1 3

Ta
bl

e
5

 T
he

 a
bs

ol
ut

e
nu

m
be

r a
nd

 p
er

ce
nt

ag
es

 o
f c

od
e

sm
el

ls
 c

o-
oc

cu
rr

en
ce

s

S
T
i∕
j

EN
O

C
ED

O
I

H
C

EC
B

G
TS

H
M

C
H

N
PC

EM
L

EC
L

EP
L

TM
PM

TM
M

(3
36

2)
(8

40
)

(7
87

6)
(2

82
9)

(6
3)

(7
21

45
)

(5
42

99
)

(4
13

68
)

(1
30

26
)

(3
97

2)
(2

79
50

)
(7

17
9)

EN
O

C
4

34
6

32
0

53
5

39
0

31
2

15
9

11
21

2
63

(3
.1

3%
)

(0
.1

1%
)

(1
0.

29
%

)
(0

.9
5%

)
(0

%
)

(1
5.

91
%

)
(1

1.
60

%
)

(9
.2

8%
)

(4
.7

2%
)

(0
.3

2%
)

(6
.3

0%
)

(1
.8

7%
)

ED
O

I
4

21
0

0
0

0
0

0
0

0
0

(0
.7

8%
)

(0
.4

7%
)

(2
.5

%
)

(0
%

)
(0

%
)

(0
%

)
(0

%
)

(0
%

)
(0

%
)

(0
%

)
(0

%
)

(0
%

)
H

C
34

6
21

46
0

0
31

15
23

95
16

61
82

3
61

8
16

65
72

6
(7

.3
4%

)
(4

.3
9%

)
(0

.2
6%

)
(5

.8
4%

)
(0

%
)

(3
9.

55
%

)
(3

0.
40

%
)

(2
1.

08
%

)
(1

0.
44

%
)

(7
.8

4%
)

(2
1.

14
%

)
(9

.2
1%

)
EC

B
32

0
46

0
2

61
3

42
3

28
7

10
9

24
51

9
21

1
(2

.6
3%

)
(1

.1
3%

)
(0

%
)

(1
6.

26
%

)
(0

.0
7%

)
(2

1.
66

%
)

(1
4.

95
%

)
(1

0.
14

%
)

(3
.8

5%
)

(0
.8

4%
)

(1
8.

34
%

)
(7

.4
5%

)
G

TS
0

0
0

2
63

63
60

0
0

0
0

(0
.0

5%
)

(0
%

)
(0

%
)

(0
%

)
(3

.1
7%

)
(1

00
%

)
(1

00
%

)
(9

5.
23

%
)

(0
%

)
(0

%
)

(0
%

)
(0

%
)

H
M

C
53

5
0

31
15

61
3

63
53

99
0

34
24

9
71

68
30

81
11

34
3

30
64

(6
7.

28
%

)
(0

.7
4%

)
(0

%
)

(4
.3

1%
)

(0
.8

4%
)

(0
.0

8%
)

(7
4.

73
%

)
(4

7.
47

%
)

(9
.9

3%
)

(4
.2

7%
)

(1
5.

72
%

)
(4

.2
4%

)
H

N
PC

39
0

0
23

95
42

3
63

53
99

0
32

52
0

69
44

28
93

95
84

27
98

(5
0.

63
%

)
(0

%
)

(0
%

)
(4

.4
1%

)
(0

.7
7%

)
(0

.1
1%

)
(9

9.
43

%
)

(5
9.

89
%

)
(1

2.
78

%
)

(5
.3

2%
)

(1
7.

65
%

)
(5

.1
5%

)
EM

L
31

2
0

16
61

28
7

60
34

24
9

32
52

0
70

87
25

55
83

86
29

09
(3

8.
57

%
)

(0
.7

5%
)

(0
%

)
(4

.0
1%

)
(0

.6
9%

)
(0

.1
4%

)
(8

2.
79

%
)

(7
8.

61
%

)
(1

7.
13

%
)

(6
.1

7%
)

(2
0.

27
%

)
(7

.0
3%

)
EC

L
15

9
0

82
3

10
9

0
71

68
69

44
70

87
75

3
66

34
41

31
(1

2.
14

%
)

(1
.2

2%
)

(0
%

)
(6

.3
1%

)
(0

.8
3%

)
(0

%
)

(5
5.

02
%

)
(5

3.
30

%
)

(5
4.

40
%

)
(5

.7
8%

)
(5

0.
92

%
)

(3
1.

71
%

)
EP

L
11

0
61

8
24

0
30

81
28

93
25

55
75

3
84

7
28

7
(3

.7
0%

)
(0

.2
7%

)
(0

%
)

(1
5.

55
%

)
(0

.6
0%

)
(0

%
)

(7
7.

56
%

)
(7

2.
83

%
)

(6
4.

32
%

)
(1

8.
95

%
)

(2
1.

32
%

)
(7

.2
2%

)
TM

PM
21

2
0

16
65

51
9

0
11

34
3

95
84

83
86

66
34

84
7

68
83

(2
6.

06
%

)
(0

.7
5%

)
(0

%
)

(5
.9

5%
)

(1
.8

5%
)

(0
%

)
(4

0.
58

%
)

(3
4.

28
%

)
(3

0%
)

(2
3.

73
%

)
(3

.0
3%

)
(2

4.
62

%
)

TM
M

63
0

72
6

21
1

0
30

64
27

98
29

09
41

31
28

7
68

83
(6

.6
9%

)
(0

.8
7%

)
(0

%
)

(1
0.

11
%

)
(2

.9
3%

)
(0

%
)

(4
2.

68
%

)
(3

8.
97

%
)

(4
0.

52
%

)
(5

7.
54

%
)

(3
.9

9%
)

(9
5.

87
%

)

 Software Quality Journal

1 3

Table 6 Top-3 pair of smells based on the lift value for each individual application and for all applications
combined

Project Smells pair Support Confi-
dence

Lift Lev-
erage

Convic-
tion

Moodle Too Many Methods ⇔ Excessive Class
Length

0.01 0.51 30.93 <.01 1.52

Excessive Method Length ⇔ Too Many
Public Methods

0.01 0.48 29.59 -0.01 1.8

Excessive Method Length ⇔ Excessive
Class Length

0.01 0.50 19.20 -0.01 1.48

Joomla Too Many Methods ⇔ Excessive Class
Length

0.02 0.20 9.22 0.01 1.12

Too Many Methods ⇔ Excessive Method
Length

0.01 0.26 7.55 <.01 0.82

Excessive Method Length ⇔ High NPath
Complexity

0.03 0.35 7.45 -0.17 0.72

phpMyAd-
min

Excessive Method Length ⇔ Excessive
Class Length

0.007 0.24 14.71 -0.05 1.18

Excessive Method Length ⇔ High Method
Complexity

0.007 0.24 14.64 -0.36 0.45

Excessive Class Length ⇔ High Coupling 0.007 0.23 13.97 0.004 1.26
CakePHP High NPath Complexity ⇔ Excessive

Method Length
0.01 0.29 13.18 -0.05 1.12

High NPath Complexity ⇔ Too Many
Public Methods

0.02 0.44 10.55 -0.19 0.69

Too Many Methods ⇔ Excessive Class
Length

0.04 0.72 9.97 <.01 2.92

CodeIgniter Excessive Method Length ⇔Leftrightarrow
Too Many Public Methods

0.07 0.64 4.99 -0.04 1.88

Excessive Method Length ⇔ High NPath
Complexity

0.77 0.64 4.99 -0.17 0.82

High NPath Complexity ⇔ High Method
Complexity

0.08 0.81 4.28 -0.53 0.61

Piwik Too Many Methods ⇔ Excessive Method
Length

0.01 0.24 19.83 <.01 1.10

High Method Complexity ⇔ Too Many
Methods

0.01 0.24 19.83 -0.03 1.23

High NPath Complexity ⇔ Too Many
Methods

0.01 0.28 18.80 -0.01 1.3

Wordpress Excessive Method Length ⇔ High NPath
Complexity

0.03 0.24 7.39 -0.45 0.24

Too Many Public Methods ⇔ Excessive
Method Length

0.03 0.24 7.39 -0.12 0.52

Excessive Class Length ⇔Leftrightarrow
Excessive Method Length

0.03 0.27 7.31 -0.04 0.54

Symfony Excessive Class Length ⇔ Too Many Public
Methods

<.01 0.22 16.11 .01 0.77

High Coupling ⇔ Too Many Public Meth-
ods

0.01 0.26 7.85 -0.04 0.80

High Coupling ⇔ High NPath Complexity 0.01 0.24 7.52 -0.01 0.90
Laravel High NPath Complexity ⇔ High Method

Complexity
0.14 0.65 4.39 0.11 2.2

Software Quality Journal

1 3

Furthermore, taking advantage of the Apriori association rule mining algorithm, we
investigate the phenomenon of code smells co-occurrences within our benchmark at
the class and method levels. We use Apriori to assess the relation based on a set of
metrics between a pair of code smells. We set our metrics thresholds as follows: we
selected a minimum support of 80% of a code smells pair. Based on Fig. 4, more than
60% of classes have more than one smell type. Thus, we increased the minimum sup-
port threshold to restrict the number of associated smells. The lift is set to 1 as we are
looking for strongly associated smells. We set the minimum length of a rule to 2 since
we want to assess the association degree between 2 code smells. Consequently, the
strongest candidate rules are those with higher metrics values than the defined metrics
thresholds.

Table 6 reports the top-3 associated pairs of smells based on the lift value, for each of
our studied projects, and for all the projects (combined dataset). The findings indicate that
only 7 out of the 12 code smells tend to co-occur frequently and have associations with each
other (i.e., lift>1). We note that the method-level smell Excessive Method Length frequently
co-occurs with the method-level smell High NPath Complexity in the projects WordPress,
CodeIgniter, Joomla, and CakePHP, which is presumed to be the result of the Exces-
sive Parameter List as indicated when combining all projects in a single dataset. Moreover,
the Excessive Method Length often co-occurs with Too Many Public Methods, in phpBB,
WordPress, and Moodle. We also notice that the Too Many Methods co-occurs with the
Excessive Class Length smell in 3 out of the 10 studied projects, Moodle, Joomla, and
CakePHP. However, each pair of code smells has a leverage value close to zero, which
means the considered associations are weak.

To further assess the association between smell pairs, we calculate the Chi-square coef-
ficient McHugh (2013) and Cramir (1946) tests to examine whether these relationships are
statistically significant. In particular, we apply the chi-squared and the Cramer’s V tests on
the code smell pairs having lift values higher or equals to 15. In total, 10 pairs of smells are
identified with lift>15. Table 7 presents the results of our Chi-squared test to the related
null hypothesis, H20 , assessing the absolute independence of the two variables, i.e., the
causality relationship between the co-occurring smells. Out of the 10 examined pairs in

Table 6 (continued)

Project Smells pair Support Confi-
dence

Lift Lev-
erage

Convic-
tion

phpBB Too Many Public Methods ⇔ Too Many
Methods

<.01 0.51 9.28 <.01 2.04

Excessive Method Length ⇔Leftrightarrow-
Leftrightarrow Too Many Public Methods

<.01 0.90 7.97 -0.16 7.99

Excessive Class Length ⇔ Too Many Public
Methods

<.01 0.41 7.78 -0.02 1.24

Projects
combined

Excessive Parameter List ⇔ Too Many
Methods

<.01 0.26 53.57 <.01 1.27

High Coupling ⇔ Excessive Parameter List <.01 0.26 34.95 <.01 1.31
Excessive Parameter List ⇔ High NPath

Complexity
<.01 0.20 32.89 -0.01 0.61

Too Many Methods ⇔ Excessive Class
Length

<.01 0.35 19.34 <.01 1.35

 Software Quality Journal

1 3

Table 7, and given the p-values <0.05, we reject the null hypothesis for the first 9 smell
pairs (p-values highlighted in bold). The class-level smell Excessive Class Length is sig-
nificantly associated with three method-level smells (1) Too Many Public Methods, (2) Too
Many Methods, and (3) Excessive Method Length. Hence, These findings suggest that there
is a unidirectional cause-effect relationship in these three associations (Method-level ⇔
Class-level).

Further investigation of the Cramer’s V strength shows that the Excessive Class Length
and the Too Many Public Methods smells have a higher degree of association (V=0.2105)
than the other smell pairs, which is still considered a weak association. Based on the results
in Table 5, the Too Many Public Methods occurs with 50.92% of the total number of
instances of the Excessive Class Length. The first 9 smell pairs, for which we rejected H20 ,
have a weak degree of association based on the Cramer’s V test. We can conclude that a
high co-occurrence rate does not necessarily imply a high association degree. Although the
High Method Complexity is highly co-occurring with High NPath Complexity, they do not
have a strong degree of association.

Our reported analysis aims to depict any possible relationship between the different
pairs of code smells. However, as by definition some code smells are in the class level,
the co-occurrence is assumed to be highly witnessed in large classes. Thus, we have con-
ducted a Kendall correlation test to examine the relation between the LOC and the number
of code smells in the small, medium, and large classes. Figure 5 reports the correlation
coefficients for the three groups. As shown, a weak correlation of <0.1 is found for the
three groups. However, we see more code smells occurring in large classes, which could

Table 7 The results obtained from the Chi-square and Cramer’s V tests

Smells pair Chi-square p-value Cramer’s V

Excessive Class Length ⇔ Too Many Public Methods <0.0001 0.2105
Too Many Methods ⇔ Excessive Class Length <0.0001 0.1483
High Method Complexity ⇔ Too Many Methods <0.0001 0.1402
Excessive Method Length ⇔ Excessive Class Length <0.0001 0.1208
Excessive Method Length ⇔ Too Many Public Methods <0.0001 0.1045
Excessive Parameter List ⇔ High NPath Complexity <0.0001 0.0870
High NPath Complexity ⇔ Too Many Methods <0.0001 0.0624
High Coupling ⇔ Excessive Parameter List <0.0001 0.0616
Too Many Methods ⇔ Excessive Method Length 0.0004 0.0106
Excessive Parameter List ⇔ Too Many Methods 0.1833 0.0041

(a) Small (b) Medium (c) Large

Fig. 5 Kendall correlation coefficients between LOC and number of code smells of small, medium, and
large classes

Software Quality Journal

1 3

somewhat introduce the class size as a play-factor in the co-occurrence phenomenon. To
deeply decipher the reasons behind smells co-occurrence, in our future work, we will
compute the odds that a non-class size-related smell occurs in large classes due to another
smell and not to the class size.

Summary for RQ2 The co-occurrence phenomenon is highly diffused as an average of 60%
of smelly classes have more than one smell. Some of the code smells could frequently co-
occur in the server side and result into a causality effect (e.g., Excessive Class Length, and
Too Many Methods). However, their degree of association is generally weak. Code smells
related to complexity and size of code components such as Excessive Class Length and High
Method Complexity tend to have a higher degree of association. As well, our results depict
the fact that method-level code smells could be the cause of class-level code smells.

4.3 RQ3: The impact of code smells on the change‑proneness

Figure 6 displays the spectrum of code change sizes, i.e., code churn, in both smelly and
non-smelly groups using beanplots. We observe from Fig. 6 that smelly classes in the stud-
ied web applications have a clearly higher code change size than non-smelly classes. These
findings indicate that code fragments affected with code smells may require increased
maintenance efforts since they have higher code change-proneness. Specifically, the
median of code change size that a smelly class could experience along the application evo-
lution is 70, whereas non-smelly files experience an average code change size of only 30.
To statistically assess the significance of the difference, we supported this result by com-
puting the Mann–Whitney and the Cliff’s delta effect size tests. The Mann–Whitney test
has shown a significant difference between the two populations with a p-value< 0.001 and
a small effect size of 0.235, giving us statistical evidence to reject the null hypothesis H30 .
On average, smelly files are almost 2.3 times more subject to code changes than smells-free
files. WordPress, Piwik, and Symfony projects have scored the highest difference in
median of code changes in favor of smelly files with 294, 249, and 214, respectively. Simi-
lar to previous studies in Java object-oriented systems Khomh et al. (2012); Palomba et al.
(2018b), we witnessed similar findings reported in Fig. 6, where smelly classes exhibit a
clearly higher level of change-proneness compared to non-smelly classes. The smelly files
have their maintenance requirements, which tends to be related to the coexistence of vari-
ous types of code smells such as High Method Complexity and Excessive Method Length.

To further analyze the effect on the change-proneness of code smells, we investi-
gated the change-frequency that reflects how likely are smelly files to change, i.e.,
involved in commit changes. In particular, we would like to investigate how many times

Fig. 6 Average of code changes
of smelly and non-smelly classes
(with a log-scale of 1-2000)

0 500 1000 1500 2000

Smelly

Non−Smelly

 Software Quality Journal

1 3

will a smelly file be changed as compared to non-smelly files between two consecutive
releases. The beanplot in Fig. 7 indicates the difference between the number of com-
mits, where a smelly file has been modified as compared to non-smelly files. Overall, we
observe that smelly files are almost 1.4 more subject to get updated (with a median of 8)
than non-smelly files (with a median of 6) along the project’s evolution. Statistically, the
Mann–Whitney proves the significant difference with a p-value< 0.001 and a large effect
size of 0.674.

We observe from Fig. 8 the correlation coefficients of LOC and Churn for small,
medium, and large smelly classes. In our samples data distribution, small classes have a
median of 34 and 24 for LOC and Churn, respectively. Whereas medium classes have a
median LOC of 155 and median Churn of 63, and large classes have 759 and 134 medians
of LOC and Churn, respectively. To better understand the relationship between the class
size and churn, we report in Fig. 8 the correlation results. We observe a very weak correla-
tion between LOC and Churn for the three samples (0.159 for large, -0.08 for medium, and
0.068 for small). This result indicates there is no correlation between class size and churn.
Thus, the change-proneness is not the result of class size, but rather this further supports
our results as code churn is related to smells not to other factors (such as class size).
Summary for RQ3 Source code files containing code smells experience 2.3 times more
code changes (median=70) than non-smelly files (median=30). Moreover, smelly files
are 1.4 times more likely to get changed in commits than smell-free files. These findings
indicate that code fragments affected with code smells may require increased maintenance
efforts since they have higher code change-proneness.

4.4 RQ4: The impact of code smell types on the change‑proneness

We used logistic regression to assess whether the existence of a smell is associated with the
change-proneness of a class, i.e., the state of a class {changed, unchanged}. We report the
results of the logistic regression model in Table 8, where the column “% releases” indicates
the percentage of releases with a p-value < 0, 05 for which the corresponding smell type is
statistically significant in the logistic model. Overall, we find that most projects are affected
by smells, which increase their proneness to change, and this effect differs from a project
context to another.

More specifically, we find that the smells High Method Complexity (HMC), Exces-
sive Method Length (EML) and Too Many Methods (TMM) do impact the change prone-
ness of classes in 39%, 31% and 28% of releases, respectively. In particular, the HMC has
shown an impact on 5 projects out of the 10 studied projects, namely Piwik, Word-
Press, Moodle, phpBB and Symfony. The EML has an impact on 3 projects, namely

Fig. 7 Average of code change-
frequency of smelly and non-
smelly classes (with a log-scale
of 5-20)

5 10 15 20

Smelly

Non−Smelly

Software Quality Journal

1 3

phpMyAdmin, Moodle, and Cakephp, while TMM impacted 4 projects, (Joomla,
Moodle, Symfony and phpMyAdmin).

To better understand how the smells correspond most with the change-proneness of
classes, we analyzed their probabilities of occurrence in the Moodle application, since
its classes are the most susceptible to change according to 8 different kinds of code smells,
as shown in Table 8. We found that the High Method Complexity (HMC), the Excessive
Method Length (EML), the High Coupling (HC), the Too Many Public Methods (TMPM),
and the Too Many method (TMM) are the most occurring five code smells with a probabil-
ity of 0.34, 0.23, 0.11, 0.10 and 0.06 to occur in a class, respectively. The remaining code
smells have a probability < 0.03 . As well, we noticed that the High Coupling (HC) scored
a higher probability to occur than the Too Many method (TMM) which, in general, impacts
more releases (28%). Means, we have more instances of the High Coupling (HC) than the
Too Many method (TMM). It is important to note that high diffuseness does not necessar-
ily depict high frequency in the affected projects. For instance, the Excessive Class Length
(ECL) has shown a higher diffuseness rate (97% of the releases) and accounts for 2.7% of
the total number of smells more than the High Coupling (HC) and the Too Many method
(TMM). However, it only has a 0.03 probability to occur in the classes of the Moodle
application.

0

25

50

75

100

20 40 60
LOC

C
hu

rn

Small

(a) Small

0

100

200

300

400

50 100 150 200 250 300
LOC

C
hu

rn

Medium

(b) Medium

0

500

1000

1500

2000

0 2500 5000 7500
LOC

C
hu

rn

Large

(c) Large

Fig. 8 Kendall correlation coefficients between LOC and Churn of small, medium, and large classes

Table 8 The results of the logistic regression model reporting the number of releases for which each smell
type is statistically significant (p-value < 0.05) over the studied releases and projects

Code smell % releases Projects

High Method Complexity 39% Piwik, WordPress, Moodle, phpBB, Symfony
Excessive Method Length 31% phpMyAdmin, Moodle, CakePHP
Too Many Methods 28% Joomla, phpMyAdmin, Moodle, Symfony
High Coupling 23% Piwik, WordPress, phpMyAdmin, Moodle
Too Many Public Methods 18% WordPress, Moodle
Excessive Class Length 15% phpMyAdmin, Moodle
High NPath Complexity 13% Piwik, Cakephp
Excessive Parameter List 5.3% Moodle, Symfony, phpBB
Empty Catch Block 3.1% Moodle
Excessive Depth Of Inheritance 1.4% Symfony
Excessive Number Of Children ∼1% –
Goto Statement 0% –

 Software Quality Journal

1 3

On the other hand, we observed that other code smells such as the Excessive Number of
Children and Goto Statement have a negligible impact on any release or project’s change-
proneness. This could be due to the fact that these smells are slightly diffused and slightly
frequent, as observed in RQ1. We underline that (1) code smells with low diffuseness and
frequency rate are not statistically proven to impact the change-proneness. Therefore, not
all code smells should be given equal priority during source code refactoring and cleaning.
The GoTo Statement and Excessive Number Of Children, are not seen as troublesome as
they do not cause an increase in the number of code changes; (2) the code changes of the
largest project Moodle is impacted by eight code smells. Long code components could
increase the class complexity and, thus, makes it more vulnerable to code changes and
eventually to code smells; (3) the diffuseness and frequency rate of smells does not neces-
sarily reflect its ability of impact on the change-proneness. For example, The High Method
Complexity smell is diffused in 99% of the releases (cf. Table 4), yet, its impact on the
change-proneness is statistically significant, with only 5 out of the 10 studied projects (i.e.,
50% of the projects).

We can conclude that the effect of a code smell on the change-proneness differs based
on the smell type and the project context. The existence of code smells is alarming as they
increase the likelihood of experiencing a higher rate of code changes, particularly with
High Method Complexity, Excessive Method length, Too Many Methods and High Cou-
pling, which achieved the highest impact on the change-proneness in our experiments. For
each studied project, at least one single smell is showing a significant impact. Thus, we
reject the null hypothesis H40.
Summary for RQ4 The impact of code smells on the change-proneness varies from a smell
type to another and from a project context to another. Notably, the High Method Com-
plexity and Excessive Method Length have shown an increase on the change proneness of
classes on more than 30% of the releases and 50% of the studied projects.

4.5 RQ5: The impact of code smells on the fault‑proneness

As a preliminary study, we investigated the number of faults before and after the introduc-
tion of smells between every two consecutive releases. Figure 9 shows the beanplots of
the number of fault-inducing commits before and after the smells are introduced. For each
release Rj , we catch the fault-inducing commits (FIC) that take place after the introduction
of the smells (i.e., in the period between Rj and Rj+1), and before the introduction of the
smells (i.e., in the period between Rj−1 and Rj). For each fault-fixing commit FFCi=1i → n ,
we count the number of FIC before and after the release Rj date.

We witnessed consistent behavior across our studied subjects, where faults are more
likely to exist after code smells are introduced. We also found that the number of faults
introduced in large and medium files, after the implementation of the smells, could be
multiple compared to small files. As can be seen in Fig. 9, after the introduction of code
smells, the number of faults in small classes is likely to increase 3 times (median of 6 faults
after the introduction smells, compared to only 2 faults before the smells are introduced).
Medium files are 5 times more prone to faults after the smells introduction (median of
1 fault before the smells introduction and 5 faults after the smells introduction. Finally,
large files encounter a median of 7 faults after code smells introduction while a median
of only 1 fault per file is observed before smells are introduced. Overall, the number of
faults identified in our dataset before the introduction of code smells accounts for 24.7%
as compared to 75.3% after the introduction of smells. To get more statistical evidence, we

Software Quality Journal

1 3

calculated the Mann–Whitney and the Cliff’s delta tests to evaluate the differences between
the samples. The small, medium and large smelly files demonstrated a statistically signifi-
cant difference as compared to smell-free files with a p-value< 0.001 . Both, small and large
size smelly files exhibit a large effect-size (0.87 and 0.56, respectively), while medium size
smelly files exhibit a negligible effect-size (0.17). Since we obtained a negligible effect
size in the medium samples, we need to perform a statistical power analysis to avoid a type
I (i.e., rejecting a true null hypothesis) or type II (i.e., Failing to reject a false null hypoth-
esis) errors as suggested by Macbeth et al. (2011) and Cousineau and Domar (2007). We
used the wmwpow R package to compute the probability of rejecting the hypothesis that
both smelly and non-smelly medium files experience the same number of faults before and
after the introduction of smells. Based on the distributions of both medium size smelly and
non-smelly samples and the effect size, we obtained a power score of 0.673 to correctly
assume that both samples are significantly different.

To examine the extent to which the trend of the file’s smelliness and faultiness holds
valid compared to non-smelly faulty files, we normalize the number of faults in both sam-
ples by the number of effective commits in a release. The first aspect to notice from the
plots in Fig. 10 is that the assumption is still valid with the normalization of the number of
faults. Second, we can see that we have a less dispersion of data (i.e., less number of outli-
ers) as compared to the distribution of non-normalized faults (Fig. 9), with an average dif-
ference of 0.002 for small and medium files and 0.003 for large files.

To assess the relationship between code smells and faults, we computed the number
of fault-fixing commits in smelly and non-smelly classes. We removed all censored data
covering groups that have zero fixing-commits. In Fig. 11, we witnessed a difference in the
number of fixing-commits in favor of smelly classes. On average, small, medium and large
smelly files are 1.6, 1.5, and 1.4 times subject to more fault-fixing commits, respectively,
compared to non-smelly files. Overall, smelly files are likely to undergo 2 more fixing-
commits than non-smelly files, regardless of their size. The same results are witnessed with
the normalization of the number of fixing commits in favor of smelly classes as shown in
Fig. 12. We can as well clearly see the difference in the number of fixing-commits between
the smelly and non-smelly for the medium groups. Compared with the results observed
with the change-proneness (RQ3), smelly files are more susceptible to code changes (a

0

20

40

60

Before After

Small

0

10

20

30

40

50

60

Before After

Medium

0

10

20

30

40

50

60

Before After

Large

Fig. 9 The number of faults before and after the introduction of smells by class size

 Software Quality Journal

1 3

median code churn score of 70 for smelly files and 30 for non-smelly files) than faults.
Our results confirm the findings by Khomh et al. (2012) and Palomba et al. (2018b) in
Java traditional software applications, reporting that smelly files are more fault-proneness
than other files and that the degree of the fault-proneness is less observed than with the
change-proneness.

To get more statistical evidence on the fault-proneness phenomenon, we applied the
Mann–Whitney, and Cliff’s delta tests on the three groups of files (small, medium, large)
of each application. To fix the ties observed in some of the data, we followed the methodol-
ogy suggested by Conover (1973) proposing the ranking of the tied values. The results are
reported in Table 9 for each individual project and for the combined dataset. We observe a
statistically significant difference in the combined dataset for the three groups of smelly and
non-smelly files (p-value<0.001) with a negligible effect size for small files, and a small

0.00

0.01

0.02

0.03

Before After

Small

0.00

0.01

0.02

0.03

0.04

Before After

Medium

0.00

0.01

0.02

0.03

0.04

Before After

Large

Fig. 10 Normalized number of faults before and after the introduction of smells by class

0

5

10

15

Smelly Non−Smelly

Small

0

2

4

6

8

10

12

14

Smelly Non−Smelly

Medium

0

2

4

6

8

10

12

14

Smelly Non−Smelly

Large

Fig. 11 The number of fixing-commits in smelly and non-smelly files by class size

Software Quality Journal

1 3

effect size for both medium and large files. Hence, the fault-proneness phenomenon was sta-
tistically more significant in medium and large files, than small files. For example, the pro-
jects Piwik and Symfony display a statistically significant difference (p-value<0.001) in
the three groups, with medium and large effect sizes (d=0.441 and 0.895, respectively). For
other projects, such as Wordpress and phpBB, small size non-smelly files experienced
more faults than smelly files. Similar findings are observed in the large size files in phpMy-
Admin, Moodle, and CodeIgniter. However, there is no statistical significance in the
Wordpress project. It is worth noting that, overall, in our combined dataset, 86% of the
smelly files have a higher median of faults than smell-free files.

Although this analysis illustrates how smelly files encounter more faults than other
classes, we did not see a substantial difference in the number of fault-fixing commits con-
cerning file sizes. For this reason, we carried out another series of experiments to explore
how the class size could impact (1) the fault perseverance in the system before it is fixed,
and (2) the code churn deployed in the fault-fixing commits.

To investigate the propagation of faults in our studied projects, we count all commits
that hold a particular fault #ID (we refer to as commits-exhibiting a fault) between the
fault-inducing commit and the fault-fixing commit. As reported in Fig. 13, we observe that
the highest number of CEF in the three groups exist in the smelly files (median of 2 in
smelly files and a median of 1 in non-smelly files). Small size smelly files experience more
CEF (median of 3 in smelly files and a median of 1 in non-smelly files) as opposed to large
and medium smelly classes (median of 2 in smelly files and a median of 1 in non-smelly
files). However, for some large files, faults could persist up to 60 commits without being
fixed against 30 and 40 commits in small and medium size files, respectively. Thus, these
findings indicate that faults in large code files tend to survive for a longer time. Overall,
we found a significant difference of smelly files in the three groups (p-value<0.001) with
a negligible effect size for small smelly files (d=0.043), and small effect sizes for medium
and large smelly files (d=0.215, and d=283, respectively). The same results are witnessed
when normalizing the number of CEF as shown in Fig. 14 These results provide insights
that smelly and faulty code could be a tough combination to be managed efficiently during
software maintenance tasks.

1e−04

2e−04

5e−04

1e−03

2e−03

5e−03

1e−02

Smelly Non−Smelly

Small

1e−04

2e−04

5e−04

1e−03

2e−03

5e−03

1e−02

Smelly Non−Smelly

Medium

1e−04

2e−04

5e−04

1e−03

2e−03

5e−03

1e−02

Smelly Non−Smelly

Large

Fig. 12 Normalized number of fixing-commits in smelly and non-smelly files by class

 Software Quality Journal

1 3

Ta
bl

e
9

 T
he

 M
an

n–
W

hi
tn

ey
 a

nd
 C

liff
 d

el
ta

 te
sts

 re
su

lts
 b

et
w

ee
n

sm
el

ly
 a

nd
 n

on
-s

m
el

ly
 c

la
ss

es
. T

he
 “

-”
 d

es
cr

ib
es

 c
er

ta
in

 s
itu

at
io

ns
 w

he
re

 th
e

sm
al

l,
m

ed
iu

m
 o

r l
ar

ge
 s

am
-

pl
es

 c
on

ta
in

ed
 o

nl
y

sm
el

ly
 o

r n
on

-s
m

el
ly

 fi
le

s,
fo

r w
hi

ch
 te

sts
 c

an
no

t b
e

co
nd

uc
te

d

M
an

n–
W

hi
tn

ey
 T

es
t

C
lif

f’s
 d

el
ta

Sm
al

l
M

ed
iu

m
La

rg
e

Sm
al

l
M

ed
iu

m
La

rg
e

M
sd

P
M

sd
P

M
sd

P
d

ph
pM

yA
dm

in
S

–
–

–
1.

62
5

1.
74

6
0.

02
42

2.
07

4
1.

36
3

0.
80

8
–

0.
82

2(
L)

-0
.8

13
(L

)
N

S
1.

6
0.

73
6

2.
23

0
1.

53
5

Jo
om

la
S

1.
5

0.
94

0
0.

02
4

1.
43

3
0.

74
7

0.
64

1
1.

70
9

1.
21

6
0.

03
5

0.
77

9(
L)

-0
.0

41
(n

)
0.

70
3(

L)
N

S
1.

1
0.

31
6

1.
30

9
0.

53
9

1.
21

4
0.

42
5

W
or

dp
re

ss
S

3.
06

8
3.

58
4

0.
43

2
3

2.
44

9
<

0.
00

1
3.

79
5

3.
34

6
<

0.
00

1
-0

.8
16

(L
)

0.
60

1(
L)

0.
01

3(
n)

N
S

3.
71

2
3.

64
3

2.
01

8
2.

11
2

2.
22

0
1.

95
3

Pi
w

ik
S

3.
34

7
1.

99
1

<
0.

00
1

3.
41

6
2.

2
<

0.
00

1
2.

46
6

1.
84

6
<

00
01

0.
54

9(
L)

0.
46

4(
M

)
0.

83
2(

M
)

N
S

1.
89

6
2.

55
9

1.
84

3
1.

51
7

1.
72

5
1.

45
6

La
ra

ve
l

S
1.

5
0.

70
7

0.
01

8
1

0
0.

83
8

1.
55

5
0.

72
6

0.
01

0.
5(

L)
-0

.1
53

(S
)

0.
30

7(
S)

N
S

1
0

1.
08

3
0.

28
8

1.
33

3
0.

57
7

C
ak

eP
H

P
S

–
–

–
1.

46
8

0.
76

1
0.

04
1

1.
89

1
1.

21
9

<
0.

00
1

–
0.

55
1(

L)
0.

36
8(

M
)

N
S

1.
18

5
0.

42
7

1.
35

8
0.

60
3

M
oo

dl
e

S
3

3.
09

1
0.

01
1.

48
0

1.
25

5
<

0.
00

1
1.

96
4

1.
71

0
0.

4
0.

50
3(

L)
0.

3(
S)

-0
.6

84
(L

)
N

S
1.

62
8

2.
08

7
1.

23
2

0.
47

0
1.

5
0.

74
5

Sy
m

fo
ny

S
3

1.
41

4
<

0.
00

1
1.

53
6

1.
14

2
<

0.
00

1
2.

69
7

2.
14

4
0.

01
0.

73
5(

L)
0.

44
1(

M
)

0.
89

5(
L)

N
S

1.
54

7
0.

97
1

1.
40

9
0.

72
1

2.
03

3
1.

37
6

C
od

eI
gn

ite
r

S
–

–
–

1.
71

4
0.

95
1

0.
50

8
1.

58
3

0.
79

2
0.

05
1

–
-0

.5
83

(L
)

-0
.9

73
(L

)
N

S
1.

25
0.

5
1.

33
3

0.
57

7
ph

pB
B

S
2.

28
5

2.
13

8
0.

4
1.

71
4

0.
48

7
0.

28
0

2.
68

1.
92

8
0.

04
2

-0
.2

28
(S

)
-0

.1
42

(n
)

0.
24

9(
S)

N
S

2.
18

7
2.

28
6

1.
47

0
0.

62
4

1.
92

8
1.

59
1

C
om

bi
ne

d
S

2.
66

6
2.

11
6

<
0.

00
1

2.
23

2
1.

8
<

0.
00

1
2.

54
6

2.
22

9
<

0.
00

1
<

0.
00

1(
n)

0.
22

6(
S)

0.
26

6(
S)

N
S

1.
63

9
1.

49
3

1.
52

2
1.

07
7

1.
81

2
1.

48
4

Software Quality Journal

1 3

Finally, to get a deeper understanding of the fault-proneness phenomenon, we investi-
gate the required code churn in fault-fixing commits for both smelly and non-smelly files,
as reported in Fig. 15. We observe a significant difference (p-value< 0.001) between smelly
and non-smelly files in terms of code churn to fix faults in small, medium, and large files.
A median code churn score of 152 (i.e., added, removed, and modified lines of code) is
witnessed in large size smelly files against 84 in smell-free large size files. The median
code churn score for medium size files are 118 in smelly files and 59 in non-smelly files.
Both medium and large files have a small effect size of d=0.259 and d=0.248, respectively.
We also observe that small size smelly files undergo a significant magnitude of the phe-
nomenon as smelly files have a median of 203.5 against 48 for non-smelly files. However,
small size smelly files witness a negligible effect size (d = 0.106) as opposed to smell-free
small size files. Overall, regardless of their size, smelly files witness higher code churn
(with a median of 144) than non-smelly files (with a median of 62).

0

10

20

30

40

Smelly Non−Smelly

Small

0

10

20

30

40

Smelly Non−Smelly

Medium

0

10

20

30

40

50

60

70

Smelly Non−Smelly

Large

Fig. 13 Average of faults propagation in smelly and non-smelly files

1e−04

2e−04

5e−04

1e−03

2e−03

5e−03

1e−02

2e−02

Smelly Non−Smelly

Small

1e−04

2e−04

5e−04

1e−03

2e−03

5e−03

1e−02

2e−02

Smelly Non−Smelly

Medium

1e−04

2e−04

5e−04

1e−03

2e−03

5e−03

1e−02

2e−02

5e−02

Smelly Non−Smelly

Large

Fig. 14 Normalized average of faults propagation in smelly and non-smelly files

 Software Quality Journal

1 3

Summary for RQ5 Smelly files are more fault-prone than non-smelly files. Overall, we
observe that smelly files are (1) 6 times more prone to faults after the introduction of
smells; (2) 2 times more likely to undergo fixing-commits; (3) 2 times more vulnerable
to faulty commits; and(4) require 2.4 times more code churn in the fault-fixing commits.
Same results were found when normalizing the history length of the releases.

5 Implications

Our study delivers several important messages and can have various implications for
researchers, practitioners and educators.

5.1 Implications for practitioners

Prioritize code smells Since web applications are of a heterogeneous nature, fixing code
smells is of paramount importance as a single failed class on the server side could crash
the entire system and hinder the user experience and could be as costly for the company.
Different practitioners, including developers, testers and tool builders involved in main-
taining the code, can use our findings in the diffuseness, co-occurrences and impacts of
code smells to focus their efforts on code smells with high severity and those related to the
functional side of the system. For instance, diffused code smells (RQ1) co-occurring code
smells (RQ2), as well as smells having high impact on the change-proneness (RQ3 and
RQ4) and the fault-proneness (RQ5) should be given higher priority during the different
maintenance tasks.

Avoid long and complex code fragments Long and complex coding practices (e.g.,
Excessive Method Length and High Method Complexity code smells) are the most com-
monly diffused code smells in our studied systems, with more than 90% of releases
affected, as shown in RQ1. Such particular smells have shown a significant effect on the

−200

0

200

400

600

800

1000

Smelly Non−Smelly

Small

0

200

400

600

800

1000

Smelly Non−Smelly

Medium

0

200

400

600

800

1000

Smelly Non−Smelly

Large

Fig. 15 Churn in fault-fixing commits in smelly and non-smelly files

Software Quality Journal

1 3

change-proneness. Developers are often overwhelmed with additional changes to maintain
classes containing these particular types of smells. Therefore, it is recommended to refac-
tor, i.e., split, long code elements into sub-classes or sub-methods to facilitate future main-
tenance tasks. In particular, in the context of web applications, classes affected by High
Coupling (HC) code smells may need special care, since web applications architectures
already interconnect many different components.

Prioritize testing of smelly and frequently modified files The results of our study show
that code smells do increase the change- and fault-proneness of source files. We stressed
that smelly files are subject to further code changes and that different types of smells do not
generally lead to the same effect on the change- and fault-proneness. Therefore, software
testers are encouraged to improve and prioritize the testing of smelly files, as an attempt to
avoid their impacts and risks.

Build automated code smell‑aware fault fixing tools The findings of RQ4 and RQ5
showed that code smells have a significant effect on the number of faults, which may lead
to higher production costs, increased maintenance activities, and potential failures. Tool
builders are, therefore, recommended to establish specialized code smell-aware fault-fixing
tools that are specific to a web app architecture that helps and reduces the effort, time and
cost of fixing different types of faults in smelly files.

5.2 Implications for researchers

Investigate the relationship between code smells The co-occurrence of code smells
(RQ2) may represent a first step toward examining potential relationship between code
smells, which involves a sharp distinction between code smells in the class and method
levels. Our findings suggest a high co-occurrence rate between some code elements having
a high complexity and large size. Researchers could use and extend our publicly available
dataset Dataset (2020) to perform an in-depth analysis of code smell co-occurrences that
would provide more insights into the relationships and degree of association between code
smells based on code changes and faults dependencies. Such analysis may provide efficient
and customized refactoring recommendation and/or change impact analysis tools for web
applications.

Plan refactoring actions The findings of our study clearly emphasize that web develop-
ers need better control of code smells. In particular, as shown in RQ4 and RQ5, at least 4
code smell types including High Coupling, Excessive Method Length, Too Many Methods,
and High Method Complexity have shown a high effect on the change- and fault-proneness.
The maintenance efforts and costs could benefit from the removal of such code smells.
Researchers are therefore encouraged to develop efficient refactoring strategies to help
eliminate such code smells, particularly, in the multi-layer architecture of the web-app
which requires efforts to localize the source of a propagated fault. These refactoring solu-
tions will support improving the overall quality and maintainability of the software system.

Explore the impact of individual code smells on maintainability aspects Code smells
have a negative impact on the change- and fault-proneness. However, files could be affected
by one or several code smells at the same time, which may bring different levels of change-
and fault-proneness. Hence, a first step toward evaluating the severity of code smell types

 Software Quality Journal

1 3

is to perform further analysis to investigate how the change- and fault-proneness of affected
files could vary when considering different code smells types and instances in the same
files or (sub-)modules.

5.3 Implications for educators

Teach a clean code “culture” The results of our study can be valuable for educators teach-
ing design and implementation principles. Educators need to implant a clean code “cul-
ture” by providing students with examples of how bad coding practices can lead to signifi-
cant effects. Typical courses about software design, programming and/or software quality
would introduce the topic of code smells and illustrate the main impacts on change- and
fault-proneness to increase the awareness of students on the harmfulness of code smells.
Students need to also learn how to solve code smells by example and know how important
it is to eradicate them through following good design and programming practices. In the
context of web applications, in particular, we expect the impact of code smells on the sus-
tainability of the entire application to be severe and more burdening. As web applications,
by nature, interconnect multiple components, code smells or faults may seriously jeopard-
ize or harden the development and maintenance and cause major failures.

6 Threats to validity

Construct threats to validity concerns errors in measurements. To collect our dataset, we
relied on the detection accuracy of PHPMD tool PHPMD (2021), which is an open-source
tool specialized for PHP web-based software applications providing a command line option
that is adequate to our analysis, and widely-used in previous studies on web applications
Rio and Abreu (2019); Mon et al. (2019); Mon and Myo (2015); Yulianto and Liem (2014).
However, there could still be some errors in the smells detection. Another potential threat
to validity could be related to the analysis of fault-fixing commits using keywords. While
this technique has been widely-used in prior studies Saboury et al. (2017); Spadini et al.
(2018); Palomba et al. (2018b, 2019, 2018a), it could not be free of false positives when
finding fault-inducing commits. To mitigate this issue, we randomly selected and inspected
a set of 60 fault-fixing commits and their related fault-inducing commits and found only
five false positives.

Conclusion threats to validity could be related to the data analysis to draw our conclu-
sions. To analyze the diffuseness of code smells, we followed a simple method counting
the absolute number of code smells instances in all the smelly classes in our examined
430 releases. To provide statistical evidence, we used the Mann–Whitney test and Cliff’s
delta effect size along with a beanplot representation that displays the density of code
smells instances. To analyze the co-occurrence phenomenon of code smells, we computed
the total number of co-occurring pairs and used other descriptive statistical tests to indi-
cate the discrepancy between the degree of association and co-occurrence. Furthermore,
in our investigation of fault-proneness, we analyzed the impact of code smells on three
variables related to fixing-commits, code churn, and the number of faulty-commits where
faults manifest. The Mann–Whitney and Cliff’s delta statistical tests quantified the differ-
ence observed between smelly and non-smelly class change- and fault-proneness. However,
still there could be errors that we did not notice. The emphasis of our research on the server

Software Quality Journal

1 3

side of web applications can represent another potential threat. Our analysis could therefore
provide insights that do not reflect all quality aspects of a web application. As part of our
future work, we plan to consider other programming languages, formatting languages (e.g.,
Cascading Style Sheets (CSS) Mazinanian et al. (2014)), and multi-language web applica-
tions, and also investigate the impact of code smells in the client-side.

Internal threats to validity concern the factors that could restrict the applicability of our
observations or affect our conclusions. In RQ2, we do not explicitly assume that strongly
co-occurring code smells result from a relationship of causality. We cannot tell if a given
smell is the reason behind another smell introduction. To further explore the phenomenon of
co-occurrence, we combined our research with more statistical analyses. Our observations
regarding the impact of code smells on the change- and fault-proneness could not involve a
direct cause-effect relationship as this latter could be affected by other factors such as refac-
toring or improvement activities. As part of our future work, we plan to explore the potential
existence of direct cause-effect relationships between code smells in web applications. Our
obtained results regarding the co-occurrence depict the possible impact of class size on the
co-occurring code smells mostly related to size and complexity. Hence, as part of our future
work, we plan to investigate code smells co-occurrence considering the class size, as well as
different levels of co-occurring code smells (3 pairs, 4 pairs, etc.).

External threats to validity concern the generalization of our findings. To the best of our
knowledge, this is the first empirical analysis conducted on code smells diffuseness, co-
occurrence, and impact in web-based applications. While we considered 430 releases from
10 web-based projects, and 12 common types of code smells, we cannot generalize our
results to other projects and other contexts. As part of our future work, we plan to reduce
this threat further by analyzing more projects from more industrial and open-source web
based software projects. We also plan to conduct a survey with developers to learn more
about their awareness of the different impacts of code smells in their projects and investi-
gate potential impacts on other software development aspects.

7 Conclusion

Code smells are symptoms of poor design choices, which typically lead to higher resource
consumption and systems that are harder to maintain. Given the growth and importance of
web applications, in this paper, we presented a longitudinal exploratory study on the server
side of 430 releases from 10 long-lived web applications to investigate (1) the diffuseness
and co-occurrence of 12 common types of code smells, (2) the impact of code smells on
the maintainability aspects of server side code in terms of change- and fault-proneness.
Our study delivers several important findings. The results indicate that the phenomenon of
code smells diffuseness and co-occurrence is highly observed in web applications server
side. Some specific code smells are diffused in nearly 99% of releases, such as the High
Complexity method. We also found that nearly 60% of smelly classes have more than one
smell instance. For instance, the High Method Complexity often co-occurs with five smell
types, including Excessive Method Length and Excessive Class Length. Our results also
indicate that code smells increase the probability that a smelly class will undergo more
code changes than non-smelly classes. However, not all types of smells have the same
effect on the change-proneness and the impact of a smell has been shown to depend on the

 Software Quality Journal

1 3

context of the project. As for the fault-proneness, our results highlight an increased vulner-
ability of smelly files to faults as compared to smells-free files. In particular, smelly classes
are subject to an average of 6 more faults after code smells introduction leading to 2 times
higher number of fault-fixing activities and 2.4 times more code-churn to fix a fault as
compared to smell-free files.

As future work, we plan to further investigate the impact of code smells on soft-
ware maintainability by (1) studying the severity of code smells and examine how
their impact could propagate from a layer/component to another in web architectures;
(2) deciphering the relationship between code smells and faults to develop smell-aware
fault localization techniques; (3) studying the survivability of code smells and faults in
web applications server side; and (4) further investigating the number and type of code
smells on the change- and fault-proneness. C3.2:We also plan to cover a broader set
of code smells affecting both the front- and back-ends. Another interesting direction is
to compare our set of analyzed web-applications with others that incorporate “Micro-
Frontends”. This latter consists of dividing the front-end application into smaller pieces
to ease its development. The aim is to examine the extent to which adopting a micro-
frontend approach could improve code quality in terms of code smells and bugs.

References

Abbes, M., Khomh, F., Gueheneuc, Y.- G., & Antoniol, G. (2011). An empirical study of the impact of
two antipatterns, blob and spaghetti code, on program comprehension. In European Conference on
Software Maintenance and Reengineering, 181–190.

Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large
databases. In ACM SIGMOD international conference on Management of data, 207–216.

Agrawal, R., Srikant, R., et al. (1994). Fast algorithms for mining association rules. In 20th international
conference on very large data bases, VLDB, 1215, 487–499.

Antoniol, G., Ayari, K., Di Penta, M., Khomh, F., & Guéhéneuc, Y. -G. (2008). Is it a bug or an enhancement?
a text-based approach to classify change requests. In Conference of the center for advanced studies on
collaborative research: meeting of minds, 304–318.

Muse, B. A., Rahman, M. M., Nagy, C., Cleve, A., Khomh, F., & Antoniol, G. (2020). On the prevalence,
impact, and evolution of sql code smells in data-intensive systems. In International Conference on
Mining Software Repositories (MSR).

Bessghaier, N., Ouni, A., & Mkaouer, M. W. (2020). On the Diffusion and Impact of Code Smells in
Web Applications. In International Conference on Services Computing (SCC), 67–84.

Borg, M., Svensson, O., Berg, K., & Hansson, D. (2019). Szz unleashed: an open implementation of the szz
algorithm-featuring example usage in a study of just-in-time bug prediction for the jenkins project. In
3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality
Evaluation, 7–12.

Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997). Dynamic itemset counting and implication
rules for market basket data. In ACM SIGMOD international conference on Management of data,
255–264.

Chatzigeorgiou, A., & Manakos, A. (2010). Investigating the evolution of bad smells in object-oriented code.
In Seventh International Conference on the Quality of Information and Communications Technology,
106–115.

Conover, W. J. (1973). On methods of handling ties in the wilcoxon signed-rank test. Journal of the American
Statistical Association, 68(344), 985–988.

Conover, W. J. (1998). Practical nonparametric statistics, 350. John Wiley & Sons.
Cousineau, T. M., & Domar, A. D. (2007). Psychological impact of infertility. Best Practice & Research.

Clinical Obstetrics & Gynaecology, 21(2), 293–308.
Cramir, H. (1946). Mathematical methods of statistics (p. 500). Princeton U. Press: Princeton.
Da Costa, D. A., McIntosh, S., Shang, W., Kulesza, U., Coelho, R., & Hassan, A. E. (2016). A framework for

evaluating the results of the szz approach for identifying bug-introducing changes. IEEE Transactions
on Software Engineering, 43(7), 641–657.

Software Quality Journal

1 3

Dataset. (2020). https:// www. github. com/ stilab- ets/ CodeS mells_ WebAp ps.
Delchev, M., & Harun, M. F. (2015). Investigation of code smells in different software domains. Full-scale

Software Engineering, 31.
Fontana, F. A., Ferme, V., & Zanoni, M. (2015). Towards assessing software architecture quality by exploiting

code smell relations. In Second International Workshop on Software Architecture and Metrics, 1–7.
Fowler, M. (1999). Refactoring: improving the design of existing code. Addison-Wesley Professional.
Garg, A., Gupta, M., Bansal, G., Mishra, B., & Bajpai, V. (2016). Do bad smells follow some pattern? In

International Congress on Information and Communication Technology, 39–46.
Grissom, R. J., & Kim, J. J. (2005). Effect sizes for research: A broad practical approach. Lawrence Erlbaum

Associates Publishers.
Group, I., et al. (2010). Ieee standard classification for software anomalies. IEEE Std 1044-2009 (Revision

of IEEE Std 1044-1993) 104(2), 1–23.
Habchi, S., Rouvoy, R., & Moha, N. (2019). On the survival of android code smells in the wild. In IEEE/ACM

6th International Conference on Mobile Software Engineering and Systems (MOBILESoft), pp. 87–98.
Hamdi, O., Ouni, A., AlOmar, E. A., Ó Cinnéide, M., & Mkaouer, M. W. (2021). An empirical study on

the impact of refactoring on quality metrics in android applications. In IEEE/ACM International
Conference on Mobile Software Engineering and Systems (MOBILESoft), pp. 1–12.

Hecht, G., Benomar, O., Rouvoy, R., Moha, N., & Duchien, L. (2015). Tracking the software quality of
android applications along their evolution (t). In International Conference on Automated Software
Engineering (ASE), pp. 236–247.

Hosmer, D. W., Lemeshow, S., & Cook, E. (2000). Applied logistic regression (2nd ed.). NY: John
Wiley & Sons.

Kampstra, P., et al. (2008). Beanplot: A boxplot alternative for visual comparison of distributions. Journal
of Statistical Software, 28(1), 1–9.

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81–93.
Khomh, F., Di Penta, M., & Gueheneuc, Y. G. (2009). An exploratory study of the impact of code smells

on software change-proneness. In Working Conference on Reverse Engineering, pp. 75–84.
Khomh, F., Di Penta, M., Guéhéneuc, Y. G., & Antoniol, G. (2012). An exploratory study of the impact of

antipatterns on class change-and fault-proneness. Empirical Software Engineering, 17(3), 243–275.
Kienle, H., & Distante, D. (2014). Evolution of web systems. In Evolving Software Systems.
Kim, S., Zimmermann, T., Pan, K., James Jr, E., et al. (2006). Automatic identification of bug-introducing

changes. In IEEE/ACM International Conference on Automated Software Engineering, pp. 81–90.
Lenarduzzi, V., Palomba, F., Taibi, D., & Tamburri, D. A. (2020). Openszz: A free, open-source, web-

accessible implementation of the szz algorithm. In International Conference on Program Comprehen-
sion (ICPC).

Lenarduzzi, V., Saarimäki, N., & Taibi, D. (2019). The technical debt dataset. In International Conference
on Predictive Models and Data Analytics in Software Engineering, pp. 2–11.

Liu, X., & Zhang, C. (2017). The detection of code smell on software development: a mapping study. In Interna-
tional Conference on Machinery, Materials and Computing Technology (ICMMCT 2017), Atlantis Press.

Macbeth, G., Razumiejczyk, E., & Ledesma, R. D. (2011). Cliff’s delta calculator: A non-parametric
effect size program for two groups of observations. Universitas Psychologica, 10(2), 545–555.

Mannan, U. A., Ahmed, I., Almurshed, R. A. M., Dig, D., & Jensen, C. (2016). Understanding code
smells in android applications. In IEEE/ACM International Conference on Mobile Software Engi-
neering and Systems (MOBILESoft), pp. 225–236.

Martin, R. C. (2009). Clean code: a handbook of agile software craftsmanship. Pearson Education.
Mazinanian, D., Tsantalis, N., & Mesbah, A. (2014). Discovering refactoring opportunities in cascading style

sheets. In 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 496–506.

McHugh, M. L. (2013). The chi-square test of independence. Biochemia medica: Biochemia medica,
23(2), 143–149.

Mon, C. T., Hlaing, S., Tin, M., Khin, M., Lwin, T. M., & Myo, K. M. (2019). Code readability metric
for php. In International Conference on Consumer Electronics, pp. 929–930.

Mon, C. T., & Myo, K. M. (2015). A practical model for measuring code complexity of php. In Thirteenth
International Conferences on Computer Applications (ICCA 2015).

Olbrich, S., Cruzes, D. S., Basili, V., & Zazworka, N. (2009). The evolution and impact of code smells: A
case study of two open source systems. In International symposium on empirical software engineering
and measurement, pp. 390–400.

Olbrich, S. M., Cruzes, D. S., & Sjøberg, D. I. (2010). Are all code smells harmful? a study of god classes
and brain classes in the evolution of three open source systems. In IEEE International Conference on
Software Maintenance, pp. 1–10.

https://www.github.com/stilab-ets/CodeSmells_WebApps

 Software Quality Journal

1 3

Ouni, A., Kessentini, M., Bechikh, S., & Sahraoui, H. (2015a). Prioritizing code-smells correction tasks
using chemical reaction optimization. Software Quality Journal, 23(2), 323–361.

Ouni, A., Kessentini, M., Inoue, K., & Cinnéide, M. O. (2017). Search-based web service antipatterns
detection. IEEE Transactions on Services Computing, 10(4), 603–617.

Ouni, A., Kessentini, M., Sahraoui, H., Inoue, K., & Deb, K. (2016). Multi-criteria code refactoring
using search-based software engineering: An industrial case study. ACM Transactions on Software
Engineering and Methodology, 25(3), 1–53.

Ouni, A., Kessentini, M., Sahraoui, H., Inoue, K., & Hamdi, M. S. (2015b). Improving multi-objective
code-smells correction using development history. Journal of Systems and Software, 105, 18–39.

Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., & De Lucia, A. (2018a). A large-scale
empirical study on the lifecycle of code smell co-occurrences. Information and Software Technology,
99, 1–10.

Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., & De Lucia, A. (2018b). On the diffuseness and
the impact on maintainability of code smells: a large scale empirical investigation. Empirical Software
Engineering, 23(3), 1188–1221.

Palomba, F., Di Nucci, D., Panichella, A., Zaidman, A., & De Lucia, A. (2019). On the impact of code smells
on the energy consumption of mobile applications. Information and Software Technology, 105, 43–55.

Palomba, F., Oliveto, R., & De Lucia, A. (2017). Investigating code smell co-occurrences using association
rule learning: A replicated study. In IEEE Workshop on Machine Learning Techniques for Software
Quality Evaluation (MaLTeSQuE), pp. 8–13.

Pecorelli, F., Palomba, F., Khomh, F., & De Lucia, A. (2020). Developer-driven code smell prioritization. In
International Conference on Mining Software Repositories.

PHPMD. (2021).PHP Mess Detector, available at https:// phpmd. org
Piatetsky-Shapiro, G. (1991). Discovery, analysis, and presentation of strong rules. Knowledge discovery in

databases, 229–238.
Planning, S. (2002). The economic impacts of inadequate infrastructure for software testing. National Institute

of Standards and Technology.
Rio, A., & e Abreu, F. B. (2019). Code smells survival analysis in web apps. In International Conference on

the Quality of Information and Communications Technology, Springer, pp. 263–271.
Rodríguez-Pérez, G., Robles, G., & González-Barahona, J. M. (2018). Reproducibility and credibility in

empirical software engineering: A case study based on a systematic literature review of the use of the
szz algorithm. Information and Software Technology, 99, 164–176.

Rodríguez-Pérez, G., Robles, G., Serebrenik, A., Zaidman, A., Germán, D. M., & Gonzalez-Barahona, J.
M. (2020). How bugs are born: a model to identify how bugs are introduced in software components.
Empirical Software Engineering, 1–47.

Rossi, G., Pastor, O., Schwabe, D., & Olsina, L. (2007). Web engineering: modelling and implementing web
applications. Springer Science & Business Media.

Saboury, A., Musavi, P., Khomh, F., & Antoniol, G. (2017). An empirical study of code smells in javascript
projects. In International conference on software analysis, evolution and reengineering (SANER),
pp. 294–305.

Saidani, I., Ouni, A., Mkaouer, M. W., & Palomba, F. (2021). On the impact of continuous integration on refac-
toring practice: An exploratory study on travistorrent. Information and Software Technology, 106618.

Śliwerski, J., Zimmermann, T., & Zeller, A. (2005). When do changes induce fixes? ACM sigsoft software
engineering notes, 30(4), 1–5.

Spadini, D., Aniche, M., & Bacchelli, A. (2018). Pydriller: Python framework for mining software repositories.
In ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 908–911.

Spadini, D., Palomba, F., Zaidman, A., Bruntink, M., & Bacchelli, A. (2018). On the relation of test smells
to software code quality. In IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 1–12.

Statistics, P. https:// w3tec hs. com/ techn ologi es/ overv iew/ progr amming_ langu age. Accessed Jul 7 2020.
Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A., & Poshyvanyk, D. (2015). When

and why your code starts to smell bad. International Conference on Software Engineering, 1, 403–414.
Williams, C., & Spacco, J. (2008). Szz revisited: verifying when changes induce fixes. In Workshop on

Defects in large software systems, pp. 32–36.
Yulianto, S. V., & Liem, I. (2014). Automatic grader for programming assignment using source code analyzer.

In International Conference on Data and Software Engineering (ICODSE), pp. 1–4.
Zimmermann, T., Premraj, R., & Zeller, A. (2007). Predicting defects for eclipse. In Third International

Workshop on Predictor Models in Software Engineering (PROMISE’07: ICSE Workshops 2007),
IEEE, pp. 9–9.

https://phpmd.org
https://w3techs.com/technologies/overview/programming_language

Software Quality Journal

1 3

Narjes Bessghaier is a PhD student at Ecole de technologie superieure
(ETS), Montreal, University of Quebec. She obtained her MSc and
BSc degrees from the University of Sfax, in 2017 and 2015, respec-
tively. Her research interests include software engineering, software
quality, mining software repositories, empirical software engineering,
and web-based software systems.

Ali Ouni is an Associate Professor in the Department of Software
Engineering and IT at Ecole de technologie superieure (ETS), Univer-
sity of Quebec, Canada. He received his Ph.D. degree in com-
puter science from University of Montreal in 2014. Before joining
ETS Montreal, he has been an assistant professor at Osaka University,
Japan, and UAE University. For his exceptional Ph.D. research pro-
ductivity, he was awarded the Excellence Award from the University
of Montreal. He has served as a visiting researcher at Missouri Uni-
versity of Science and Technology, and University of Michigan,
in 2013 and 2014 respectively. His research interests are in software
engineering including software maintenance and evolution, refactor-
ing of software systems, software quality, service-oriented comput-
ing, and the application of artificial intelligence techniques to soft-
ware engineering. He served in organization and program committee,
and reviewer in several journals and conferences.

Mohamed Wiem Mkaouer is currently an Assistant Professor in the
Software Engineering Department, in the B. Thomas Golisano Col-
lege of Computing and Information Sciences at the Rochester Insti-
tute of Technology. He received his PhD in 2016 from the University
of Michigan-Dearborn. His research interests include software qual-
ity, systems refactoring, model-driven engineering and software test-
ing. His current research focuses on the use computational search and
evolutionary algorithms to address several software engineering prob-
lems such as software quality, software remodularization, soft-
ware evolution and bug management. He served in various confer-
ences including the International Conference on Program
Comprehension (ICPC), the International Conference on Software
Analysis, Evolution and Reengineering (SANER), the Association for
Computing Machinery’s (ACM) Special Interest Group on Computer
science education (SIGCSE). he is also reviewers for various journals

including the IEEE Transactions on Software Engineering (TSE), the ACM Transactions on Software Engi-
neering andMethodology (TOSEM), the Empirical Software Enineering Journal (EMSE).

	A longitudinal exploratory study on code smells in server side web applications
	Abstract
	1 Introduction
	2 Related work
	2.1 Code smells diffuseness and evolution
	2.2 Code smells co-occurrence
	2.3 Impact of code smells on change-proneness
	2.4 Impact of code smells on fault-proneness

	3 Empirical study design
	3.1 Replication package
	3.2 Project selection
	3.3 Analysis method

	4 Study results and analysis
	4.1 RQ1: Code smells diffuseness and frequency
	4.2 RQ2: Code smells co-occurrence
	4.3 RQ3: The impact of code smells on the change-proneness
	4.4 RQ4: The impact of code smell types on the change-proneness
	4.5 RQ5: The impact of code smells on the fault-proneness

	5 Implications
	5.1 Implications for practitioners
	5.2 Implications for researchers
	5.3 Implications for educators

	6 Threats to validity
	7 Conclusion
	References

