
https://doi.org/10.1007/s10796-020-10100-w

On the Impact of Aesthetic Defects on the Maintainability of Mobile
Graphical User Interfaces: An Empirical Study

Makram Soui1 ·Mabrouka Chouchane2 ·Narjes Bessghaier3 ·MohamedWiemMkaouer4 ·Marouane Kessentini5

Accepted: 25 December 2020
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
As the development of Android mobile applications continues to grow and to follow up its high increase in demand and
market share, there is a need for automating the evaluation of Graphical Mobile User Interfaces (GMUI) to detect any
associated defects as they are perceived to lead to bad overall usability. Although, there is growth in research targeting the
assessment of mobile user interfaces, there is a lack of studies assessing their impact on quality. The goal of this work is to
analyze the impact of defects on the maintainability of user interfaces by studying the connection between the existence of
defects and the change-proneness of user interfaces. We empirically study the impact of 8 aesthetics defects in 56 releases of
5 Android applications and examine the diffuseness of GMUI defects throughout mobile apps evolution. Then, we investigate
whether infected classes are changed more frequently, and have a larger change-size than other non-infected classes in terms
of Change Frequency (CF) and Change-Size (CS). Moreover, we studied the survivability and co-occurrences of GMUI
defects in order to prioritize their corrections. Our empirical validation confirms that the infected user interfaces are more
prone to undergo many changes than other user interfaces, and there are some severe aesthetic defects still exists even after
makingmany improvements in the code that may need more maintenance efforts.

Keywords Aesthetics defects · Change-size · Correlation · Evolution of Android GMUI

� Makram Soui
m.soui@seu.edu.sa

Mabrouka Chouchane
chouchane.mabrouka@univgb.rnu.tn

Narjes Bessghaier
narjes.bessghaier.1@ens.etsmtl.ca

Mohamed Wiem Mkaouer
mwmvse@rit.edu

Marouane Kessentini
marouane@umich.edu

1 College of Computing and Informatics Saudi Electronic
University, Riyadh, Saudi Arabia

2 National School of Computer science of Manouba,
Manouba, Tunisia

3 Ecole de Technologie Superiere (ETS), Quebec, Canada

4 Rochester institute of technology, Rochester, NY, USA

5 University of Michigan, Ann Arbor, MI, USA

1 Introduction

With the evolution of smartphones, mobile applications
(apps) are becoming one of the pillars of software market
(research 2013). Nowadays, industry heavily relies on
mobile apps to reach end-users swiftly and smoothly. Nearly
197 billion apps were downloaded in 2017 (Statista 2020),
and Android apps have been leading the market share
with 87% in 2016 (Store 2020). One of the key features
standing behind the exponential usage growth of mobile
apps is their usability (Paiano et al. 2013). Mobile apps
are more user-centered by a trade-off between providing
an interactive and appealing design along with high-
performance execution. Henceforth, the longevity of the app
in the market requires finding the right compromise between
continuously optimizing its features while maintaining its
current performance. While mobile clients typically can
choose between various apps providing similar services,
developers, on the other hand, are facing the challenge
of maintaining the high quality of their app’s design
while rapidly evolving it with newly introduced features to
guarantee their maintainability and competitiveness.

/ Published online: 20 February 2021

Information Systems Frontiers (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

The tremendous amount of changes, introduced while
evolving the app, is responsible for the deterioration of
its code design. These bad design decisions are known as
code smells (Fowler and Beck 1999), and their existence
negatively impacts the understanding and maintenance of
the app’s codebase (Yamashita and Moonen 2013; Lanza
and Marinescu 2007). These code smells can be classified
into two categories: external and internal. Internal smells
are obtained from the source code analysis, and indicate
poor design decisions. As for external smells , they are
symptoms of poor usability choices, eventually experienced
at the GMUI level. Thereby, the good design of mobile
Graphical User Interfaces (GMUI) plays an important role
in promoting the quality of the app.

Aesthetics requirements are the user interface or the end
appearance of the application. Most of the time it keeps
changing between different versions. This happens espe-
cially when the end-users demand a new set of requirements
or complain about design choices. As it generally happens,
the clients detect and request changes in the User Inter-
face (UI). Aesthetics visual design aims at improving the
usability of the application and its maintainability for busi-
ness purposes. The need for a high visual attractiveness of
the GMUI is essential for the end-users, so that the interac-
tion of the application becomes very simple and effective.
In order to repair an issue with the GMUI, clients will
report the problem and send their feedback to the devel-
opment group through the Play stores where the apps are
published. Developers are mostly concerned with the opti-
mization of the functional aspect of the application than the
GMUI design aspect as it is mostly rated as low negative
impact factor. However, GMUI’s code may achieve up to
45% of the total application (Myers 1995), and though they
cannot create a direct impact on the apps performance, they
still can create problems with the usability and productive-
ness among the users. Nevertheless the critical impact of
functional bugs than that of aesthetics defects, the latter still
be a priority for end-users.

When several complaints are being received from end-
users, developers will try to meet these new requirements.
And it is here where survivability points will be affected
to each detected defect to prioritize its fixing. However,
the question that arises here is: do developers always
succeed in meeting users needs and reduce the number of
design defects. A good beginning to such an endeavor is
to: (1) control the evolution pace of aesthetics defects all
throughout apps evolution. We aim at getting an insight
over the quality of performed code changes according to the
number of defects in release r(k) and its subsequent r(k+1).
(2) investigate whether infected classes are changed more
frequently, and have a larger change-size than other non-
infected classes in terms of Change Frequency (CF) and
change-size (CS). (3) study the types of aesthetics defects

requiring more maintenance effort, mainly by studying their
survivability and co-occurrence in the studied mobile apps.

Our main findings prove that infected GMUI source files
experience an increase in the change-size in comparison
with the non infected ones. In addition, we find that there
is some defects that tend to be more persistent than other
defects. Furthermore, we notice the co-occurrence of some
pairs of defects, which advocates prioritizing their correc-
tion with respect to survivability.

The remainder of this paper is organized as follows:
Section 2 defines the related work of this research. Section 3
introduce the background. Section 4 presents our empi-
rical study and main research questions while Section 5
provides the empirical validation. Section 6 discusses the
key findings of the experiments. Section 7 presents the
potential threats to validity. The paper ends with Section 8
that concludes the empirical study and outlines our future
directions.

2 RelatedWork

Since there is no consensus on how to fix and prioritize the
detected structural aesthetics defects. Several studies have
focused on estimating the survivability of internal and exter-
nal code smells. These studies (Olbrich et al. 2010; Li and
Shatnawi 2007; Khomh et al. 2009; Mkaouer et al. 2017;
AlOmar et al. 2019) analyzed the correlation between code
smells types and look for a possible cause-effect relation-
ship by verifying whether removing a specific type of code
smell results in reducing the system’s proneness to changes,
which also shrinks the maintenance overhead. In that vein,
Olbrich et al. (2010) have empirically investigated the cor-
relation between two smells God and Brain classes regard-
ing their change frequency and change-size along with
different releases. The findings show that class size made
the God and Brain classes more subject to defects. Conse-
quently, splitting functionalities over different classes will
reduce the occurrence of code smells. Li and Shatnawi
(2007), studied the correlation between code smells and
a class error probability in three releases of Eclipse (3.0,
2.1, 2.0). The results showed that infected classes by
Shotgun Surgery, God Class, and God Methods resulted
in more class error probability than non-infected classes.
Khomh et al. (2009) conducted an empirical analysis on
13 different versions of Azureus and Eclipse considering 9
code smells, to better understand the relationship between
infected code classes and class change-size. The results vali-
date that classes containing smells are more exposed to
frequent updates than the remaining, and this observation
holds across all versions and projects. They also observe
a variance in change-proneness depending on the type of
the smell. Tufano et al. (2016) aimed at determining the

660 Inf Syst Front (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

developer’s perception of test smells and came out with
results showing that developers could not identify test
smells very easily, thus, resulting in a need for automation.
The results also showed that when a test code is commit-
ted to the repository that’s the time when test smells are
usually introduced. Bavota et al. (2012) conducted a human
study and proved the strong negative impact of smells on
test code understandability and maintainability. Another
empirical investigation by the same authors (Bavota et al.
2015) indicated that there is a high diffusion of test smells
in both open-source and industrial software systems, with
86% of JUnit tests exhibiting at least one test smell. The
second study shows that test smells have a strong nega-
tive impact on program comprehension and maintenance.
There are several existing works that focused on the evolu-
tion of code smells. In this context, Mercaldo et al. (2018)
study the evolution of Android malware quality by measur-
ing a set of software quality metrics that are divided into
four groups (i.e. dimensional metrics, complexity metrics,
object-oriented metrics, and Android-oriented metrics). The
goal of this study is to define the evolution of such metrics
in Android malware and goodware applications. In the same
context, Gao et al. (2019) conduct a large-scale empirical
study of the complex evolution of Android apps. This study
used six metrics to measure the complexity of Android apps
by presenting the impact of these applications on the main-
tainability process. While, Palomba et al. (2019) conducted
a large-scale empirical study to analyze the influence of 9
Android-specific code smells on the energy consumption of
60 Android apps. The aim of this work is to determine the
relationship between code smells and energy consumption.

These empirical studies highlight the importance for
the community to develop tools to detect test smells and
automatically refactor them. Refactoring code smells has
been the focus of several studies (Mkaouer et al. 2014,
2015, 2017). Although external defects are detected at the
GMUI level, they differ from the structural GMUI defects
as it considers functional usability issues. External smells
are produced through UI commands when a widget sends
an event. The mending of these design smells requires
rooting their cause in the java source code where the UI
listeners are declared and associated. Blouin et al. (2017),
detected the Blob listener smell by conducting a static code
analysis procedure, and performed a refactoring operation
by separating each command that composes a blob listener
into a new UI listener applied on the same widget. To
the best of our knowledge, no prior studies considered the
impact of aesthetics defects on the maintenance of user
interfaces. Pragmatically, are we deteriorating, maintaining
or improving the UI structure as we modify the code? In
fact, the Android UI layout is designed using Extensible
Markup Language (XML) while Java is solicited for
providing the core functionality. Therefore, the purpose of

this paper is to help developers in the optimization of their
GMUI maintenance activities by studying the diffuseness
of aesthetics defects for the same UI throughout several
releases. This study complements the existing effort of
the community in reducing the impact of code smells and
aesthetic defects.

3 Background

3.1 GMUI Aesthetic Defects

Although, the word design is mostly addressed to the func-
tional part of the application, there is another fact as well
beyond the functionality of a design: aesthetics, attrac-
tiveness and beauty (Norman 2004). A good mobile user
interface (MUI) quality is compulsory to allow users to
interact smoothly with the app. That is why a suitable design
of the MUI is indispensable to increase the player loyalty
towards an application. This latter is determined through
the engagement scale, which includes 6 elements: appeal,
novelty, focused attention, felt involvement, usability and
durability (O’Brien and Toms 2010). In this study, we are
focusing on the visual appearance of an interface and its
effect on user satisfaction. As a matter of fact, aesthetics
is considered an essential factor in perceived usability (Sil-
vennoinen et al. 2014b). Consequently, it involves the user
engagement level. An app can sustain in the market as long
as it fulfills users needs with the provided functionalities.
However, the importance of a good aesthetic design can-
not be ignored. It is the visual attraction between a user
and an app. Donald Norman, the UX expert, sees beauty
as the momentum that forces us to buy products. Unfortu-
nately, the role of visual elements in mobile applications is
not intensely investigated compared to functionality. How-
ever, Silvennoinen et al. (2014a) has inspected how visual
appearance influences the user experience in the mobile app
context. Thus, aesthetics is seen as an element that attracts
and engages the app users. Türkyilmaz et al. (2015), has
investigated the importance of providing both aesthetics and
functionality on websites interfaces by users opinion. The
results show that aesthetics is as important as functionality
and plays a significant role in user satisfaction. Code smells
in previous studies are signs of bad design that are simi-
lar to our aesthetic defects, since both are carried symptoms
of bad programming practices (Ines et al. 2017; Palomba
et al. 2017; Kessentini and Ouni 2017). Code smells are
detected in the back end of the system, while aesthetic
defects are detected in the front end. We have detected
eight aesthetic defects using our existing metrics-based plu-
gin called PLAIN, which was published in a previous study
(Soui et al. 2019). These aesthetic defects are presented in
Table 1.

661Inf Syst Front (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 1 List of aesthetics
defects Defects Description Abbrv.

Incorrect layout of widgets It is related to the incorrect
arrangement of MUI compo-
nents. It concerns the alignment,
dimension, orientation, depth and
position of layouts.

(ILW)

Overloaded MUI It is a bad density of MUI.
In other words, users find the
mobile interface too dense and so
difficult to read.

(OM)

Complicated MUI It is related to the MUI that
includes too many widgets and
features which cannot meet the
users’ needs.

(CM)

Incorrect data presentation It is the incorrect extraction of
information and their display on
the mobile screen.

(IDP)

InCohesion of MUI It is the lack of the interrelated-
ness of MUI components.

(ICM)

Difficult navigation It is the lack of descriptive labels
that can be used to define the
additional information.

(DN)

Ineffective appearance of widgets It occurs when MUI widgets
follow an unexpected layout. It is
related to the bad settings of the
aesthetic aspect of a UI

(IAW)

Imbalance of MUI It is an unequal distribution of the
quantity of interactive objects of
a given MUI.

(IM)

3.2 GMUI Metrics

GMUI evaluation is the process of measuring several
interface properties, for the purpose of assessing its
interaction with a user. Such evaluation is modeled by the
construction of user’s crossed interactions with the software,
and the extent to which the user is satisfied with it (Akiki
et al. 2014). The accuracy of such model heavily relies
on the properties and measurements performed at the GUI
level.

Aesthetics of mobile app is the visual attractiveness level
of its user interface. It is related to structural and design
beauty aspects (Moorthy and Bovik 2011). The evaluation
of the aesthetics of graphical user interface is based on many
characteristics such as quality of graphics, amount of text,
and fonts, etc. In this context, Ngo et al. (2000) proposed
a set of aesthetic measures for a graphical interface, such
as balance, symmetry, equilibrium, sequence, order and
complexity, cohesion, unity, proportion, simplicity, density,
regularity, economy, homogeneity, and rhythm. The values
of these measures can be calculated using the sizes and
arrangements of components on the graphical user interface.
Moreover, Hartmann et al. (2008) proposed several metrics
such as usability, aesthetic, memory, overall preference,
engagement, service, and information of the aesthetic

attribute to enhance the visual equilibrium of label layout.
Similarly, González et al. (2012) proposed many aesthetic
metrics such as balance, linearity, and orthogonality. These
three metrics aim to assess the graphical user interfaces
aesthetically.

The metrics of structure aims to provide information
about the quality of the mobile user interface design.
Alemerien and Magel (2014) proposed several metrics of
structure, such as alignment, balance, density, size and
grouping. These metrics allow evaluators to assess the user
interface structure. Sears (1993) also proposed a metric
called layout appropriateness to organize widgets on the
user interface. This metric takes the description of the
sequence of widget actions as an input to calculate the
cost of each sequence of these actions. Parush et al. (1998)
developed a set of metrics: size, local density, alignment,
and grouping to evaluate the screen layout of the graphical
user interfaces. Furthermore, Constantine (1996) introduced
a visual cohesion metric to assess the quality of user
interface through a semantic aspect of widgets. Shoaib et al.
(2011) proposed a metric of coherence of three cohesion
modes: low, medium and high. In fact, this metric aims
to evaluate the design quality of web applications. In this
work, we use a set of evaluation metrics that were previously
validated by Ngo et al. (2000). But, these metrics did not

662 Inf Syst Front (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

take into account the characteristics of mobile devices such
as the size of the screen. In a traditional desktop GUI, the
values of metrics are calculated based on the area of layout
but in the context of mobile computing, mobile apps can
be either native, web-based, and hybrid (Masi et al. 2012).
Furthermore, several studies highlighted the importance of
visual aesthetic of mobile apps UI (Alemerien and Magel
2014, 2015). Typically, there exist two main categories
of aesthetic user interface evaluation methods: qualitative
and quantitative. The first category regroups subjective
evaluation methods which aim to analyze how a design of
user interface should respect a set of guidelines. The second
category is based on automatic metrics-based tools. In this
work, we used our tool PLAIN (Soui et al. 2017), which
allows the measurement of eight aesthetic metrics inspired
from Ngo et al. (2000) and described as follow:

- Regularity (RM) It measures the consistency spacing
between all the MUI components.

RM = 1 −
(

Nav + Nah + Nsp

3n

)
(1)

Where: (Nav): numbers of vertical alignment points.
(Nah):the numbers of horizontal alignment points.
(Nsp):the number of distinct distances between column

and row.
n:the number of the components.

- Composition (COM) It counts the number of MUI com-
ponents that are semantically linked in the same boundary.

COM = 1 −
(

G + UG

2n

)
(2)

Where:
(G): number of groups with clear boundary.
(UG): number of ungrouped objects.
(n): number of the components.

- Sorting (SM) It aims to rank MUI components in a logical
and sequential ordering according to the eye movement.

SM = 1 −
(

(
∑

j=UL,UR,LL,LR(qj

∑n
i=1 Ni, j))

4n

)
(3)

Where:
(UL): upper-left.
(UR): upper-right.
(LL): lower-left.
LR: lower-right.
(Ni,j): is the number of object on the quadrant j.
qUL=4, qUR=3, qLL=2, qLR=1.

- Complexity (CM) It measures the complexity of interface
by counting the number of rows and columns on the
interface.

CM =
(

Nvap + Nhap

2n

)
(4)

Where:
(Nvap)= number of vertical alignment points.
(Nhap)= number of horizontal alignment points.
(n) = number of objects.

- Integrality (IM) It count the number of different sizes of
MUI components and the number of spacing be-tween it.

IM = 1 −
(
0.5

[|Nsize − 1|
n

+ |asc + ∑n
i ai |

2aMUI

])
(5)

Where:
(Nsize) =number of various sizes of objects.
(n) = the number of objects.
(aMUI)= area of MUI.
(asc)= area of the screen.
(ai) = area of the object i.

- Density (DN) It measures the total number of components
in the MUI.

DM = 0.5

∣∣∣∣
∑n

i ai

aMUI

+ aMUI

asc

∣∣∣∣ (6)

Where:
(ai)= area of object i.
(asc)= area of the screen.
(n)= number of object.
(aMUI)= area of MUI.

- Symmetry (SYM) It aims to have an equal distribution of
MUI components on the right and the left side of MUI.

SYM =1−|SYMvertical|+|SYMhorizontal | + |SYMradial |
3

(7)

Where: (SYMvertical , SYMhorizontal , SYMradial) are,
respectively the vertical, horizontal and radial symmetries.

- Repartition (RM) It refers to the distribution of the
components on the mobile user interface.

RM = (n
4 !)4

nUL!nUR!nLL!nLR! (8)

Where:
(n):number of object.
(nUL):number of object on the upper-left.
(nUR):number of object on the upper-right.
(nLL): number of object on the lower-left.
(nLR):number of object on the lower-right.

663Inf Syst Front (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

In this work, we consider eight types of GUI defects
that are detected using the structural metrics when their
values go beyond specific thresholds. The aim is to compare
these measures with an adequate threshold value. In Fig. 1,
we present an illustrative example portraying the incorrect
layout defect of the home interface of Reddit app: (left)
Incorrect layout and (right) correct layout. This evaluation is
based on the regularity metric which has a value more than
the recommended threshold value which leads to incorrect
layout defect.

This paper presents an empirical study that quantifies
the impact of GMUI defects on XML files maintenance of
Android apps in means of the change frequency with which
developers maintain the infected files before and after their
infection. The following section details the design of our
empirical study.

4 Empirical Study Definition and Design

4.1 Illustrative example

Our work aims to investigate the effect of the aesthetic
defects on the change-proneness of XML files related to

a given mobile user interface. During the development of
mobile apps, developers update them by adding a new
feature, fixing errors, etc. Among those ongoing changes,
developers/designers may partially or fully modify the
design of the UIs from one update to another. To address
negative end-user feedback, some design improvements of
user interface can be introduced. In this study, we focus on
determining the size of code modifications that developers/
designers need to commit to correct one or more design
problems. To better understand the motivation behind this
work, we evaluate ten different versions of Home UI taken
from ten different releases (from V1.2.1 to V1.2.3) of
Reddit application. Figure 2 shows an illustrative example
portraying the diffuseness of GMUI defects in Home UI of
Reddit app. The depicted interface in the left of the first
version (V 1.2.1) has two GMUI defects (Overloaded MUI
and Incohesion MUI). The screenshot shown in the right is
an intermediate version (V 1.2.1.5) which has six GMUI
defects (overloaded MUI, Incohesion of MUI, Imbalanced
MUI, Difficult navigation, Incorrect data presentation and
Complicated MUI). As shown in Fig. 3, we tracked the ratio
of commits that have incorporated code changes related to
this interface. In fact, we note the existence of an important
amount of rework (change size= 125), in the version (V

Fig. 1 An example of
Regularity metric calculation of
“Home” UI of “Reddit” app
from two different releases

664 Inf Syst Front (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Fig. 2 An example of the “Home” UI of the “Reddit” app

1.2.1.5), when compared to the rework in the first version
(change size= 0). Moreover, we mention the increase in
the density of these changes right after the scaling up of
the aesthetic defects. Therefore, we investigate whether the
diffuseness of GMUI defects is heavily correlated with

the increase in change size and frequency. Since it is
difficult to confirm whether the existence of defects is
responsible for such observation, we decided to conduct
an empirical validation that we present in the following
subsection.

Fig. 3 An example of the “Home” UI of the “Reddit” app showing how change and frequency size rates increase after the introduction of aesthetics
defects

665Inf Syst Front (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

4.2 Empirical Study Design

As shown in Fig. 4, our approach consists of producing three
insights: 1) we investigate whether infected GMUI classes
are changed more frequently and proportionally along with
the system’s evolution, and have a more substantial change-
size than non-infected GMUI classes. 2) we study whether
particular kinds of aesthetics defects are persistent than
others. 3) we discover whether there is a co-occurrence
between the studied GMUI defects.
The idea consists in controlling the change frequency and
change-size of GMUI classes. We sought precisely to study
the diffuseness and the impact of aesthetics defects on
change proneness of the infected XML classes. Moreover,
we analyze how specific GMUI defect could lead to
different change size. Our aim regards the totality of XML
files for each GMUI of a release.

The detailed steps of our empirical study are as follows:
1) We use PLAIN plugin to detect eight types of common
GMUI defects across a total of 54 releases of five popular
and open source mobile apps. 2) We categorize the GMUI
classes into infected and non-infected ones. 3) We track the
changes in all commit between releases from the GitHub
platform. 4) We measure the LOC change (LOCC) per class
for each version of the same app as being an essential
parameter for the change-size calculation. 5) We calculate
the CF and the CS for each class. Finally, 6) we study
data dispersion of infected and non-infected classes. i.e.,
we analyze the survivability of GMUI defects and their
co-occurrences.

4.3 The Studied Projects

Our work aimed at understanding the diffuseness of
GUI defects in 5 selected Android applications from the
Google Play Store. All the experimented data are available
(Chouchane). Mattermost: is a secure messaging app that
connects to servers from behind your firewall. It is used by
thousands of companies around the world in 14 languages,
and runs on Android and iOS. We analyzed 11 releases of
Mattermost in the years 2016-2017 from release V-1.1.4 to

V-3.10. In 2018, the application was extended to include
17 versions which indicate its popularity. Openlauncher:
a native full open source Android launcher application. It
supports many features as Double tap to sleep, Item cus-
tomization on the desktop, and so many others. We analy-
zed 12 releases of Open launcher available on GitHub in
2017. It has a rating of 4.1 on Google Play store. Weather:
a very popular kind of applications, that forecasts weather
conditions in your city and the globe. We analyzed 9 ver-
sions between 2016-2017. It has 4.6 rating on Google
Play store. Reddit: it provides users with all top trend-
ing topics, breaking news, viral video clips, and so on. We
analyzed 11 releases of Reddit between 2013 and 2017.
It has an average rating of 4.6 in the Google Play store.
Lightning: a lightweight fast web browser that uses sim-
ple material design and gives the users lots of options to
protect their privacy. This application is very popular on
Google Play store as it has a paid version. We analyzed 12
releases from 2015 to 2017. It has a rating of 4.1 on Google
Play store. Table 2 presents the applications technical
characteristics.

The number of selected projects relates to the previous
studies that conduct any manual and qualitative analysis. We
verified that these apps represent a good sample by testing
whether they satisfy the constraints of a well-engineered
project (Munaiah et al. 2017). We also made sure that they
are open source since our experiments rely on the analysis
of the code base of these apps along with all their commits,
to replicate their evolution over releases.

4.4 Research Questions

Based on the extracted data from each application, we are
looking to answer the following questions. The correspond-
ing hypotheses for this study are formulated one-sided.

To what extent are the considered GMUI defects diffused
in the studied apps?

We aim to track the diffuseness of GMUI defects in the
studied mobile apps to discover the highly diffused GMUI
defects and hence prioritize their corrections.

Fig. 4 Overview of our
empirical study

666 Inf Syst Front (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 2 Characteristics of the
tested Android applications Char Lightning Mattermost Weather Openlauncher Reddit

#Versions 12 11 10 12 11

#Revisions 1656 744 3140 2119 5374

Time-frame 2015-2017 2016-2017 2016-2017 2017 2013-2017

Char*= Characteristics

RQ2 Is the application more susceptible to GMUI defects
through its several updates?

In this research question, we used PLAIN plugin in order
to extract the GMUI defects in each release. The aim of
this RQ is to observe the existence of aesthetics defects
along with the releases by testing the following hypothesis:
H20: The application is more susceptible to GMUI defects
through its evolution.

RQ3 Are infected GMUI classes more change-prone than
non-infected GMUI classes?

In RQ3, we are interested to see whether developers
mostly focus on refactoring infected classes over time by
testing the following null hypotheses:

H30: The Change Frequency (CF) of infected GMUI
classes is equal to the CF of non-infected GMUI classes.

In this context, the change frequency (CF) refers to
whether a class underwent at least a change between version
v (participating or not in a defect) and the subsequent ver-
sion (v+1). The CF is measured as the number of commits
for each class.

CF(Ct) =
∑n

c=1 NC(Ct) ∗ 100

LOCC(Ct)
(9)

Where: CT : class C at time t; NC(Ct): returns the number
of changes made in class c between revision n and revision
n-1. LOCC(Ct): returns the Lines Of Change (LOCC) per
class for each version of the same app.

RQ4 Do infected GMUI classes require more LOC change
than non-infected classes?

In RQ4, we examine whether the presence of aesthetics
defects leads to a significant increase in the number of touc-
hed lines of code by testing the following null hypothesis:
H40: The CS of infected GMUI classes is equal to the CS
of non-infected GMUI classes.

In this context, we have relied on the calculation of the
change-size (CS) in which we measure the number of code
lines that have been changed within a class in a release. i.e.,
(addition/removal/modification).

CS(Ct) =
∑n

c=1 CSIZE(Ct) ∗ 100

LOCC(Ct)
(10)

Where: CSIZE(Ct): returns the sum of code changes on
class c between revision n and revision n-1; LOCC(Ct):
returns the LOC change (LOCC) per class for each version
of the same app.

To test our hypotheses, the change frequency (CF), and
the change-size (CS) were calculated for the infected and
non-infected GMUI classes. Values are multiplied by 100
to avoid problems with rounding numbers when calculating
CF and CS. A nonparametric Mann-Whitney U-test is
opted similarly to Olbrich et al. (2010) since the data are
abnormally distributed and the sample size is small (Sheskin
2003). An alpha value of 0.1 was used to deal accurately
with our observations that do not exceed 40. For the sake
of visibility, and since there are no substantial variations of
the number of classes across releases, we aggregated data
obtained from the releases of each application, rather than
for each release separately.

What are the aesthetic defects of GMUI that persist
throughout the releases of studied apps?

In RQ5, we predict the survivability of GMUI defects
based on the occurrence of each aesthetic defect per release.
We calculate the total number of user interfaces and the total
number of GUI defects of each release. Then, we observe
the evolution of each defects along the GMUIs evolution in
order to discover the persistent aesthetic defects.

To what extent do GMUI defects co-occur?
In RQ6, we investigated how often the presence of GUI

defects, per type (e.g., overloaded GUI) in the mobile user
interface leads to the presence of another type of GUI
defects (e.g., difficult navigation). To this end, we computed
the number of defects in each GMUI and the percentage of
GMUI affected by one or more types of aesthetic defects.
Then, for each GUI Defect type (GDi), we computed the
percentage of its co-occurrence with another GUI Defect
type (GDj) in a given GMUI using the following formula
(Palomba et al. 2018):

Co − occurrencei,j = GDi ∩ GDj

GDi

(11)

Where i �= j. GDi ∩ GDj is the number of co-occurrences
of defect i and defect j. GDi is the number of occurrences
of defect i.

667Inf Syst Front (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

4.5 Variables Selection

To answer our null hypotheses, we construct the analysis
models based on the specification of the following depen-
dent and independent variables related to each research
question.

Dependent variables RQ3 and RQ4, we use the Mann-
Whitney U-test to understand whether the change frequency
(RQ3), and the change-size (RQ4) differ based on class
type. i.e., our dependent variables would be the ”CF” for
RQ3 and ”CS” for RQ4

Independent variables RQ3 and RQ4, would be the ”class
type”, which has 2 groups (infected GMUI and non-infected
GMUI).

In RQ5, we extract the existence of 8 types of GMUI
defects. Each variable Gc,d,v refers to how many instances
of a defect d a GMUI class c has in a version v.

5 Analysis of Studied Results

Results of RQ1 To study the diffuseness of GMUI defects,
we aggregate its occurrence number in all the releases of
the five applications. The box plot brings out significant
differences in the diffuseness of aesthetics defects. We use
the box plot of the number of aesthetics defects instances in
our analyzed Android apps.

From the box plot shown in Fig. 5, we note that
overloaded (OM) defect is the highly frequent and diffused
defect in all the apps followed by Complicated MUI and
Difficult navigation defects. However, the other defects
are neglected compared to the three mentioned defects. In
addition, the detection of these defects by PLAIN helps
developers in the maintenance process of these applications.

Results of RQ2 We calculate the percentage of GMUI
aesthetic defects along with the application evolution. In

Fig. 6 Defects density of Lightning

Figs. 6, 7, 8, 9 and 10, the x-axis represents the studied
releases of each app, the y-axis on the left side represents
the total number of aesthetic defects, and infected GMUI
classes per release.

H20 : The application is more susceptible to GMUI
defects through its evolution.

The analysis of GMUI defects occurrence frequency
through the five apps evolution, denotes that the applications
did not have more smells over updates. Referring to graphs
6 to 10, we can conclude that this statement is totally
dependent on the number of infected GMUI classes in each
release. It is noticeable that for the five applications, the
behavior of GMUI aesthetics defects curve did follow the
rate of the infected classes curve. So, we fail to accept
(H20).

Results of RQ3, RQ4 Tables 3, 4, 5, 6 and , 7 show the results
of the hypotheses tests. In all the tables, a gray-shaded
p-value row indicates that the null hypothesis is rejected
and thus the alternative hypothesis is supported. For all the
tests, we used a one-sided test because we investigate only
whether GMUI defects relate to an increase in the change
frequency and change-size. In the result tables presented
below, n represents the sample size, M for the median, sd

Fig. 5 Number of Aesthetics
defects instances in the analyzed
applications

668 Inf Syst Front (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Fig. 7 Defects density of
Mattermost

Fig. 8 Defects density of Openlauncher

Fig. 9 Defects density of Reddit

Fig. 10 Defects density of Weather

Table 3 Results for lightning app

Infected classes Non-Infected classes

n: 15 11

CF M: 0.523 0.228
sd: 0.238 0.202
P: 0.0005338
U: 146

CS M: 340 96
sd: 206 92.9
P: 0.0001141
U: 154

Table 4 Results for Reddit app

Infected classes Non-Infected classes

n: 21 10

CF M: 0.489 0.0195
sd: 0.144 0.0904
P: 6.096e-06
U: 209

CS M: 496 13.5
sd: 130 5.86
P: 5.026e-06
U: 210

Table 5 Results for weather app

Infected classes Non-Infected classes

n: 7 6

CF M: 0.799 0.0256
sd: 0.138 0.0425
P: 0.001703
U: 42

CS M: 879 23
sd: 161 9.01
P: 0.001703
U: 42

669Inf Syst Front (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 6 Results for Mattermost app

Infected classes Non-Infected classes

n: 7 6

CF M: 0.799 0.0256

sd: 0.138 0.0425

P: 0.001703

U: 42

CS M: 699 10

sd: 108 6.95

P: 0.001681

U: 42

for the standard deviation, U for the calculated U-test, and
P for P-value.

H30: The CF of infected GMUI classes is equal to the
CF of non-infected GMUI classes.

The hypothesis is rejected by all five apps. Tables 4, 5,
6, 7 and 8 show that the medians of CF for infected GMUI
Classes are remarkably (3-25-30-30-27 times) higher than
for non-infected GMUI classes. These results show that
each infected GMUI class line of code (LOC) is changed
more often than non-infected classes.

H40: The CS of infected GMUI classes is equal to the
CS of non-infected GMUI classes.

Tables 4, 5, 6, 7 and 8 show that the size of changes per-
formed per line of code in the infected GMUI classes is,
noticeably, larger than for non-infected classes. For exam-
ple, in Mattermost app, the change-size for infected GMUI
classes is, on average, 60 times higher than non-infected
GMUI classes. The alternative hypothesis is supported by
all five applications.

Table 7 Results for openlauncher app

Infected classes Non-Infected classes

n: 42 11

CF M: 0.683 0.0567

sd: 0.157 0.116

P: 2.148e07

U: 462

CS M: 892 209

sd: 460 93.2

P: 2.149e-07

U: 462

Table 8 Co-occurrence GUI defects of studied mobile apps

ILW OM CM IDP ICM DN IAW IM

ILW – 2% 12% 17% 0% 0% 2% 45%

OM 2% – 35% 10% 7% 10% 8% 3%

CM 12% 35% – 0% 0% 10% 5% 0%

IDP 17% 7% 0% – 2% 0% 12% 0%

ICM 0% 7% 0% 2% – 0% 0% 0%

DN 0% 10% 10% 0% 0% – 4% 25%

IAW 2% 8% 5% 12% 0% 4% – 12%

IM 45% 8% 0% 0% 0% 25% 12% –

Results of RQ5 To track the evolution of each user inter-
face, we compute the number of defects in each release
of the studied mobile apps. From the figures (Figs. 11,
12, 13, 14 and 15), there are slightly frequent defects in
the applications such as Incorrect appearance of widgets,
InCohesion of MUI, Incorrect data presentation, and Imbal-
anced MUI. For instance, we found that the highest number
of Imbalanced MUI instances is 11 in the V3.2.0a-beta of
Lightning app, leading to 0.2 probability of a class getting
infected by this defect. However, it exists in 69.6% of the
releases. Incorrect appearance of widgets is also weakly dif-
fused. It affects 41% of the releases and in the most two
affected releases (weather V3.0.1, and OpenLauncher V5.8
(alpha)), only 21%, and 14.8% respectively are instances of
this defect. The InCohesion of MUI affects 48.2% of the
releases, with a probability of 0.26 of classes to get infected
by this defect type. The highest number of instances of this
defect in a single release (OpenLauncher V alpha2) is 15.
In particular, the classes affected by the InCohesion of MUI
in OpenLauncher are 65 out of 101 (65%). Other aesthet-
ics defects are in opposite quite diffused. For example, we
found that the Overloaded MUI defect is present in 100% of
the analyzed releases, with a probability of 71% of appear-
ing in a class. In particular, weather V3.0.1 (V8 in the graph
in Fig. 15) has the highest number of this defect type (40
instances) in a total number of 57 classes since it is affect-
ing 70.17% of the classes. The average of the 56 releases is
affected by 20 Overloaded MUI, with 27 in OpenLauncher.
Moreover, the Complicated MUI defect exists in the totality
of the releases, with a probability of 0.46 of being present in
a class, with the highest number of instances (26) found in a
weather release V3.0.1. We conclude that Overloaded MUI
(OM) and Complicated MUI (CM) are the top two GMUI
defects that tend to survive in the studied releases with a
probability of 100% followed by the Difficult navigation
with 96.42% of affected releases, leading to 0.41 probability
of a class getting infected by this defect.

670 Inf Syst Front (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Fig. 11 Defects distribution of
Lightning

Fig. 12 Defects distribution of
Mattermost

Fig. 13 Defects distribution of
Openlauncher

671Inf Syst Front (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Fig. 14 Defects distribution of
Reddit

Interestingly, we choose to show the evolution of one
UI (Weather overview UI) for the sake of clarity as seen
in Fig. 16. We evaluated these two UIs by PLAIN and we
detected the following defects respectively OM, CM, IM,
IAW, ILW, DN, IDP, and OM, IAW, ILW.

The first thing that leaps to the eyes, is the density of
defects the weather overview UI has in V1.1 comparing
to the weather overview UI in V2.0. The number of
defects dropped down from 7 to 3. Weather overview
V1.1, has a relatively large quantity of elements making
it look charged. Although, the UI V2.0 has a minimum
and structured elements, the non-inter-relatedness of layouts
makes it feel overloaded. While some new design materials,
and more structuring of the widgets layouts have been
added to V2.0, the Overloaded MUI and the Incorrect
layout of widgets survive. It means that the OM and
CM are the most persistent defects along the interface
evolution.

Results of RQ6 we study the co-occurrence between the
GMUI defects in order to detect any potential dependencies.
To this end, we computed the number of occurrences of
each GUI defect in a given mobile app. Then, we determine
the co-existence of different types of defects such as ILW
and IM. The finding results, shown in Table 9, highlight the

phenomenon of GUI defects co-occurrence for each pair of
GUI defect types GDi and GDj .

As shown in Table 8, we observe that there exist two pairs
of GUI defects types frequently co-occurring such as (ILW,
IM) and (OM, CM). In the other side, we observe that there
are other pairs including GUI defects slightly co-occur such
as (DN, IDP) and (DN, IM). Among these, the Overloaded
MUI defect (OM) is the defect that tend to co-occur more
with other types, and in particular with Complicated MUI
(CM) (i.e., 35% of GMUIs affected by OM are also affected
by CM), IDP and DN (10%), IAW (8%) and ICM (7%).
These findings can help developers to fix some defects type
at the same time.

6 Discussion

In this section, we discuss the results of our experiments,
and we provide the implications of the study for research
and software engineering community.

6.1 Experiment Results Analysis

RQ1 and RQ2 In RQ1, we study the diffuseness of GMUI
defects in the studied mobile apps. As shown in Fig. 5, we

Fig. 15 Defects distribution of
Weather

672 Inf Syst Front (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Fig. 16 Weather Overview UI in two consecutive releases V1.1 (left),
and V2.0 (right)

can conclude that there are three GMUI defects which are
the most frequent and diffused ones (OM, CM and DN) in
all the releases of studied apps. On the contrary, (IDP, ILW
and IAW) are poorly diffused. Moreover, referring to the
Figs. 6-10, we can deduce that the curves of infected GMUI
classes and aesthetics defects evolve at the same pace.
At this stage of the study, the intensity of the correlation
can be justified based on the behavior of bad defects in
relation to the number of infected classes (GMUI), and it
is interesting for our future work to know precisely the
root causes behind this correlation. However, we can notice
that in the case when the change-size decreases from a
release to the subsequent, the number of defects decreases
as well and Vice Versa. Thus, when developers make lots of
changes to a class, there is a high chance of jeopardizing the
quality of the UI and produce many additional defects. This
interpretation raises the possibility of other external factors
interfering in such conduct.

RQ3 and RQ4 From Tables 4, 5, 6, 7 and 8, it can be
noticed that infected and non-infected GMUI classes were
significantly different regarding their change frequency and
change-size. We showed that CS and CF of infected classes
are significantly larger than respectively the CS and CF
of non-infected classes. This result is not surprising since
maintenance activities will target mostly infected classes to
clean out the defects. We can conclude that the presence of
aesthetics defect has an impact on the change-proneness and
change-size of a class.

RQ5 and RQ6 Based on Figs. 11-15 and Table 9, we
conclude that there are types of defects which are more
persistent compared to other defects. However, during the

evolution of the five studied mobile apps, we discover that
overloaded MUI is the defect that has the highest number
of occurrences in all the releases followed by Complicated
MUI and Difficult Navigation defects. Moreover, we
observe that there are two pairs of GMUI defects that are
present simultaneously in the studied GMUIs. These pairs
are (ILW, IM) and (OM, CM). Furthermore, these findings
can help developers in their maintenance tasks because
detecting the persistence of each defect can help them to
prioritize their improvement changes and try to fix the
highly frequent GMUI defects. In addition, discovering the
defects type frequently co-occurring in the same release
may help developers to fix them at the same time.

6.2 Implications for Research

Based on recent studies on GMUI evaluation (event-driven
level and structural level), developers are quite enforced to
perform separate maintenance operations on both java sour-
ce code and XML files. This practice will result in main-
tenance workload and time consumption whenever func-
tional and structural GMUI defects are detected. Taking into
account the survivability of defects types provides guidance
to software engineers on improving their maintenance oper-
ations. Furthermore, It would be interesting to investigate
the survivability of these defects types on two levels: 1) the
survivability of the defects on a class change-proneness.i.e.,
how much LOC changes a defect type requires to fix it? 2)
the survivability of the user’s satisfaction. From a user point
of view, which defect is more likely to deteriorate the usabil-
ity level of the interface? These hypotheses can be further
investigated in future studies.

Our results can be of interest to developers, who need to
know the impact of defects on their maintenance activities,
in order to predict their effort and workload. Knowing the
effect of an existent defect will help developers to choose
between two scenarios: 1) maintain some GMUI design
problems to do the minimum modifications. This solution
can be of interest to managers when there is a time-line that
must be respected. 2) choose to fix the most effort requiring
defect to provide better usability or UX.

7 Threats to Validity

In this section, we present factors that may impact the
applicability of our observations in real-life situations.

7.1 Internal Validity

It raises potential concerns regarding any factors that may
attenuate the observations. For our work we rely on change-
frequency and change-size as two main measurements we

673Inf Syst Front (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

are correlating with the existence of defects. In fact, many
factors may also be responsible for increasing the proneness
and size of changes. For instance, the change frequency
may be easily be implied by the importance of the UI. If
an interface represents the home-screen of the app, then,
eventually, it would be undergoing an important set of
regular updates. This is mitigated by investigating several
releases of the same interfaces as the change frequency
across releases will not impact our model unless there is a
drastic change that may be captured in a major release.

Another relevant example, which may trigger a wider set
of changes, is the density of the interface, i.e., UIs with more
services tend to contain a higher number of components to
maintain. To mitigate this, our model normalizes over the
LOC. Furthermore, the density of an interface of also consi-
dered as part of the defects and it would be relevant for our
study to compare interfaces with various number of compo-
nents. The data was collected from the applications hosted
repositories on GitHub. Based on each contributor’s chan-
ges, we were able to get the related change frequency and
the change-size for each class of the application. However,
we didn’t consider the quality of contributors, that we claim
to be a powerful effect factor on our experimental results.

7.2 Construct Validity

It concerns the tools used in our data collection and analysis.
In our context, we used PLAIN to detect defects. Although
the precision of PLAIN has been previously assessed (Soui
et al. 2017), any false positives issued by the tool has a direct
impact on our study.

Furthermore, we manually verified the extraction of the
information used for the experiments since the number
of releases and projects is reasonable. However, manual
activities can relatively increase the error rate that might
infect our measurements.

7.3 External Validity

We have purposely chosen 5 different Android apps to diver-
sify the UIs under analysis. We also explored the evolution
of UIs by visiting various releases of each app. This diverse
set of UIs containing different structures and functionalities
that strengthen the generalization of our observations. Yet,
we would like to extend our dataset and perform a larger-
scale empirical study to challenge our current findings.

8 Conclusion

In this paper, we investigated an empirical study, performed
on five applications, each of which has more than nine

releases. It provides a clue that aesthetics defects presence
do influence a class change frequency and change-size.
We assessed the relationship between the CS and CF of
infected and non-infected GMUI classes, which resulted
in a robust significant difference for the five applications.
Moreover, we investigate the survivability of GMUI defects
as well as the co-occurrence between these defects in order
to prioritize their correction.

In fact, some designers might choose to fix the defect
with the minimum impact on change-size. However, others
might prioritize the visual aesthetic attractiveness of the
user interface, and choose to fix the riskiest defect. In
this context, we plan to study the impact of change-size
on the visual attractiveness of GMUI. In addition, we
plan to design new GMUI defect detectors able to suggest
appropriate refactoring operations in presence of GMUI
defects co-occurrences. To generalize our findings, we plan
to extend the number of experimented applications in order
to validate our results by considering more programming
context. It would be interesting also, to take into account the
number of collaborators and their quality, which we assume
to be an indispensable agent in the maintenance activities.
This insight will let us know how to measure the risk
of having a defect while modifying an application source
code. Furthermore, we plan to study the impact of removing
or introducing a persistent defect on the change-size and
change proneness. Another direction worth to explore is to
enhance the aesthetic quality through a set of refactoring
operations of mobile user interface.

References

Akiki, P. A., Bandara, A. K., Yu, Y. (2014). Adaptive model-driven
user interface development systems. ACM Computing Surveys
(CSUR), 47(1), 9.

Alemerien, K., & Magel, K. (2014). Guievaluator: A metric-tool for
evaluating the complexity of graphical user interfaces. In SEKE
(pp. 13–18).

Alemerien, K., & Magel, K. (2015). Slc: a visual cohesion metric to
predict the usability of graphical user interfaces. In Proceedings
of the 30th Annual ACM Symposium on Applied Computing
(pp. 1526–1533): ACM.

AlOmar, E. A., Mkaouer, M. W., Ouni, A. (2019). Can refactoring be
self-affirmed? an exploratory study on how developers document
their refactoring activities in commit messages. In Proceedings of
the 3nd International Workshop on Refactoring-accepted: IEEE.

Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., Binkley, D.
(2012). An empirical analysis of the distribution of unit test
smells and their impact on software maintenance. In 2012 28th
IEEE International Conference on Software Maintenance (ICSM)
(pp. 56–65): IEEE.

Bavota, G., Qusef, A., Oliveto, R., Lucia, A., Binkley, D. (2015). Are
test smells really harmful? an empirical study. Empirical Softw.
Engg., 20(4), 1052–1094. https://doi.org/10.1007/s10664-014-
9313-0.

674 Inf Syst Front (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Blouin, A., Lelli, V., Baudry, B., Coulon, F. (2017). User interface
design smell: Automatic detection and refactoring of blob
listeners. Information and Sofwatre Technology.

Chouchane, M. https://github.com/mabroukachouchane/correlation.
Constantine, L. L. (1996). Visual coherence and usability: a cohesion

metric for assessing the quality of dialogue and screen designs.
In Proceedings Sixth Australian Conference on Computer-Human
Interaction (pp. 115–121): IEEE.

Fowler, M., & Beck, K. (1999). Refactoring: improving the design of
existing code. Addison-Wesley Professional.

Gao, J., Li, L., Bissyandé, T.F., Klein, J. (2019). On the evolution of
mobile app complexity. In 2019 24th International Conference on
Engineering of Complex Computer Systems (ICECCS) (pp. 200–
209): IEEE.

González, S., Montero, F., González, P. (2012). Balores: a suite of
principles and metrics for graphical user interface evaluation. In
Proceedings of the 13th International Conference on Interacción
Persona-Ordenador (p. 9): ACM.

Hartmann, J., Sutcliffe, A., Angeli, A. D. (2008). Towards a theory of
user judgment of aesthetics and user interface quality. ACM Tran-
sactions on Computer-Human Interaction (TOCHI), 15(4), 15.

Ines, G., Makram, S., Mabrouka, C., Mourad, A. (2017). Evaluation of
mobile interfaces as an optimization problem. Procedia Computer
Science, 112, 235–248.

Kessentini, M., & Ouni, A. (2017). Detecting android smells using
multi-objective genetic programming. In Proceedings of the 4th
International Conference on Mobile Software Engineering and
Systems (pp. 122–132): IEEE Press.

Khomh, F., Di Penta, M., Guéhéneuc, Y. (2009). An Exploratory Study
of the Impact of Code Smells on Software Change-proneness.
École Polytechnique de Montréal, Tech. Rep. EPM-RT-2009-02.

Lanza, M., & Marinescu, R. (2007). Object-oriented metrics in
practice: using software metrics to characterize, evaluate, and
improve the design of object-oriented systems. Springer Science &
Business Media.

Li, W., & Shatnawi, R. (2007). An empirical study of the bad smells
and class error probability in the post-release object-oriented
system evolution. Journal of Systems and Software, 80(7), 1120–
1128. https://doi.org/10.1016/j.jss.2006.10.018.

Masi, E., Cantone, G., Mastrofini, M., Calavaro, G., Subiaco, P.
(2012). Mobile apps development: A framework for technology
decision making. In International Conference on Mobile Comput-
ing, Applications, and Services (pp. 64–79): Springer.

Mercaldo, F., Di Sorbo, A., Visaggio, C. A., Cimitile, A., Martinelli,
F. (2018). An exploratory study on the evolution of android
malware quality. Journal of Software: Evolution and Process,
30(11), e1978.

Mkaouer, M. W., Kessentini, M., Bechikh, S., Deb, K., Ó Cinnéide,
M. (2014). High dimensional search-based software engineering:
finding tradeoffs among 15 objectives for automating software
refactoring using nsga-iii. In Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation (pp. 1263–
1270): ACM.

Mkaouer, W., Kessentini, M., Shaout, A., Koligheu, P., Bechikh, S.,
Deb, K., Ouni, A. (2015). Many-objective software remodulari-
zation using nsga-iii. ACM Transactions on Software Engineering
and Methodology (TOSEM), 24(3), 17.

Mkaouer, M. W., Kessentini, M., Cinnéide, M.O., Hayashi, S., Deb,
K. (2017). A robust multi-objective approach to balance severity
and importance of refactoring opportunities. Empirical Software
Engineering, 22(2), 894–927.

Moorthy, A. K., & Bovik, A. C. (2011). Blind image quality
assessment: From natural scene statistics to perceptual quality.
IEEE Transactions on Image Processing, 20(12), 3350–3364.

Munaiah, N., Kroh, S., Cabrey, C., Nagappan, M. (2017). Curating
github for engineered software projects. Empirical Software
Engineering, 22(6), 3219–3253.

Myers, A. C. (1995). Bidirectional object layout for separate compi-
lation. In ACM SIGPLAN Notices, (Vol. 30 pp. 124–139): ACM.

Ngo, D.CL., Teo, L.S., Byrne, J.G. (2000). Formalising guidelines for
the design of screen layouts. Displays, 21(1), 3–15.

Norman, D. A. (2004). Emotional design: Why we love (or hate)
everyday things. Basic Civitas Books.

O’Brien, H. L., & Toms, E. G. (2010). The development and evalua-
tion of a survey to measure user engagement. Journal of the Asso-
ciation for Information Science and Technology, 61(1), 50–69.

Olbrich, S. M., Cruzes, D. S., Sjøberg, D.I.K. (2010). Are all code
smells harmful? a study of god classes and brain classes in the
evolution of three open source systems. In 2010 IEEE Internat-
ional Conference on Software Maintenance (ICSM) (pp. 1–10):
IEEE.

Paiano, A., Lagioia, G., Cataldo, A. (2013). A critical analysis of the
sustainability of mobile phone use. Resources, Conservation and
Recycling, 73, 162–171.

Palomba, F., Di Nucci, D., Panichella, A., Zaidman, A., De Lucia,
A. (2017). Lightweight detection of android-specific code smells:
The adoctor project. In 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER)
(pp. 487–491): IEEE.

Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R.,
De Lucia, A. (2018). A large-scale empirical study on the
lifecycle of code smell co-occurrences. Information and Software
Technology, 99, 1–10.

Palomba, F., Di Nucci, D., Panichella, A., Zaidman, A., De Lucia, A.
(2019). On the impact of code smells on the energy consumption
of mobile applications. Information and Software Technology,
105, 43–55.

Parush, A., Nadir, R., Shtub, A. (1998). Evaluating the layout of gra-
phical user interface screens: Validation of a numerical comput-
erized model. International Journal of Human-Computer Interac-
tion, 10(4), 343–360.

research, A.BI. (2013). https://www.abiresearch.com/press/android-
will-account-for-58-ofsmartphone-app-down.

Sears, A. (1993). Layout appropriateness: A metric for evaluating
user interface widget layout. IEEE Transactions on Software
Engineering, 19(7), 707–719.

Sheskin, D. J. (2003). Handbook of parametric and nonparametric
statistical procedures. CRC Press.

Shoaib, M., Shah, A., Majeed, F. (2011). Software design quality
metrics for web based applications. Pakistan Journal of Science,
63(1).

Silvennoinen, J., Candidate, P., Vogel, M., Kujala, S. (2014a).
Experiencing Visual Usability and Aesthetics in Two Mobile
Application Contexts. Journal of Usability Studies, 10(1), 46–62.
http://www.upassoc.org.

Silvennoinen, J., Vogel, M., Kujala, S. (2014b). Experiencing visual
usability and aesthetics in two mobile application contexts.
Journal of Usability Studies, 10(1), 46–62.

Soui, M., Chouchane, M., Gasmi, I., Mkaouer, M. W. (2017). Plain:
Plugin for predicting the usability of mobile user interface. In
VISIGRAPP (1: GRAPP) (pp. 127–136).

Soui, M., Chouchane, M., Mkaouer, M. W., Kessentini, M., Ghedira,
K. (2019). Assessing the quality of mobile graphical user interfa-
ces using multi-objective optimization. Soft Computing, 1–30.

Statista (2020). https://www.statista.com/statistics/271644/worldwide-
free-and-paid-mobile-app-store-downloads/.

Store, A. (2020). https://android.jlelse.eu/apple-vs-android-a-comparative-
study-2017-c5799a0a1683.

675Inf Syst Front (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Tufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto, R.,
De Lucia, A., Poshyvanyk, D. (2016). An empirical investigation
into the nature of test smells. In Proceedings of the 31st IEEE/
ACM International Conference on Automated Software Engineer-
ing, ASE 2016 (pp. 4–15). New York: ACM.

Türkyilmaz, A., Kantar, S., Bulak, M.E. (2015). User Experience
Design: Aesthetics or Functionality? Intellectual Capital and . . . ,
559–565. http://www.toknowpress.net/ISBN/978-961-6914-13-0/
papers/ML15-111.pdf.

Yamashita, A., & Moonen, L. (2013). Exploring the impact of inter-
smell relations on software maintainability: An empirical study.
In 2013 35th International Conference on Software Engineering
(ICSE) (pp. 682–691): IEEE.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Makram Soui received a PhD in Computer Science from the
Polytechnic University of Hauts-de-France, in 2010. He holds many
academic certificates such as IBM Predictive Analytics Modeler,
IBM Business Intelligence Analyst, Oracle Certified Professional Java
Programmer, IBM Cloud Application Developer, Microsoft 98-367
Security fundamentals. He is currently an Assistant Professor and in
College of Computing and Informatics Saudi Electronic University,
Riyadh. His responsibilities include: steering committee member for
different branches of SEU across Saudi Arabia, head of research group
“Business Intelligence”, teaching various courses as the medium of
instruction in English such as artificial intelligence, machine learning,
datamining, to undergraduate and postgraduate students, revising and
developing courses plans. He published 10 referred journal papers and
24 conference papers with a low acceptance rate (between 22% and
34%).

Mabrouka Chouchane is currently a PhD student in computer science
at the University of Manouba, Tunisia. She received her master degree
in 2015, from the higher institute of management of Gabes, tunisia.
She works in the LARIA lab. Her main interests are in humancomputer
interface design, mobile user interfaces and software engineering
methods. She published 1 referred journal paper and 2 conference
papers.

Narjes Bessghaier is a PhD at the Ecole de Technologie Supérieure
(ETS) in Montreal (Canada). Her research interests include source
code static analysis, mining repositories, software quality, code
smells refactoring, as well as user interface evaluation. Her work
has been published at major software engineering venues such as
ACM Transaction on Interactive Intelligent Systems (ACM TIIS). She
obtained her master degree in Enterprises Systems Engineering from
the Institute of Computer science and Multimedia (ISIM) in Sfax-
Tunisia.

Mohamed Wiem Mkaouer is currently an Assistant Professor in
the Software Engineering Department, in the B. Thomas Golisano
College of Computing and Information Sciences at the Rochester
Institute of Technology. He received his PhD in 2016 from the
University of Michigan-Dearborn under the supervision of Professor
Marouane Kessentini. His research interests include software quality,
systems refactoring, model-driven engineering and software testing.
His current research focuses on the use computational search and
evolutionary algorithms to address several software engineering
problems such as software quality, software remodularization,
software evolution and bug management.

Marouane Kessentini is a recipient of the prestigious 2018 President
of Tunisia distinguished research award, the University distinguished
teaching award, the University distinguished digital education award,
the College of Engineering and Computer Science distinguished
research award, 4 best paper awards, and his AI-based software
refactoring invention, licensed and deployed by industrial partners,
is selected as one of the Top 8 inventions at the University of
Michigan for 2018 (including the three campuses), among over 500
inventions, by the UM Technology Transfer Office. He is currently a
tenured associate professor and leading a research group on Software
Engineering Intelligence. Prior to joining UM in 2013, He received his
Ph.D. from the University of Montreal in Canada in 2012. He received
several grants from both industry and federal agencies and published
over 110 papers in top journals and conferences. He has several
collaborations with industry on the use of computational search,
machine learning and evolutionary algorithms to address software
engineering and services computing problems.

676 Inf Syst Front (2022) 24:659–676

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not:

use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access

control;

use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is

otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in

writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal

content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

