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Modern software systems are designed to be deployed in diferent conigured environments (e.g., permissions, virtual

resources, network connections), and adapted at run-time to diferent situations (e.g., memory limits, enabling/disabling

features, database credentials). Such a coniguration during the deployment and run-time of a software system is implemented

via a set of coniguration iles, which together constitute what we refer to as a łconiguration systemž. Recent research eforts

investigated the evolution and maintenance of coniguration iles. However, they merely focused on a limited part of the

coniguration system (e.g., speciic infrastructure coniguration iles or Dockeriles), and their results do not generalize to

the whole coniguration system. To cope with such a limitation, we aim by this paper to better capture and understand

what iles constitute a coniguration system. To do so, we leverage an open Card Sort technique to qualitatively study 1,756

coniguration iles from OpenStack, a large and widely studied open-source software ecosystem. Our investigation reveals

the existence of nine types of coniguration iles, which cover the creation of the infrastructure on top of which OpenStack

will be deployed, along with other types of coniguration iles used to customize OpenStack after its deployment. These

coniguration iles are interconnected while being used at diferent deployment stages. For instance, we observe speciic

coniguration iles used during the deployment stage to create other coniguration iles that are used in the run-time stage.

We also observe that identifying and classifying these types of iles is not straightforward, as ive out of the nine types can

be written in similar programming languages (e.g., python and bash) as regular source code iles. We also found that the

same ile extensions (e.g., Yaml) can be used for diferent coniguration types, making it diicult to identify and classify

coniguration iles. Thus, we irst leverage a machine learning model to identify coniguration from non-coniguration iles,

which achieved a median AUC of 0.91, a median Brier score of 0.12, a median precision of 0.86, and a median recall of 0.83.

Thereafter, we leverage a multi-class classiication model to classify coniguration iles based on the nine coniguration types.

Our multi-class classiication model achieved a median weighted AUC of 0.92, a median Brier score of 0.04, a median weighted

precision of 0.84, and a median weighted recall of 0.82. Our analysis also shows that with only 100 labeled coniguration and

non-coniguration iles, our model reached a median AUC higher than 0.69. Furthermore, our coniguration model requires a

minimum of 100 coniguration iles to reach a median weighted AUC higher than 0.75.
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1 INTRODUCTION

Coniguring a software system consists of adapting and customizing it to diferent situations as well as plat-
forms [1]. For example, one can enable JavaScript on Firefox via the “javascript.enabled” coniguration
option. Similarly, one can conigure which tools, resources, and libraries to install on an infrastructure of a
software system. For example, one can install and conigure the łApachež web server for the infrastructure of a
web application and conigure a set of access permissions such as the resources (e.g., iles, URLs) that users can
access.

While such software coniguration becomes necessary for managing complex software systems, an incorrect
coniguration could lead to common and severe issues. For instance, WhatsApp, Instagram, and Facebook software
applications were down for several hours due to a coniguration error on October 4th, 2021 [19]. This outage
disrupted nearly 3 billion users and cost an almost $7 billion loss1. It is worth noting that this is not the irst time
when Facebook faced such an outage. A similar outage occurred in 2019, lasting as long as 24 hours, due to a
server coniguration change2. Other popular software systems, such as Amazon, faced coniguration issues as
well. In 2017, a cloud security misconiguration exposed more than 40k clients’ passwords, which were stored on
Amazon S3 [68].

These errors are due to the complexity of maintaining coniguration iles [65], which motivated prior work [12,
25, 27] on studying the maintenance of software coniguration. For instance, Cito et al. [12] examined the
maintenance and evolution of Dockeriles. Likewise, Ibrahim et al. [25] examined the maintenance and evolution
of Docker-compose iles. Similarly, Jiang and Adams [27] evaluated the maintenance eforts of IaC iles in
OpenStack by studying their co-evolution with source, test, and build iles.
However, the coniguration of a software system can be made through multiple coniguration tools and

coniguration iles, among which some cannot be straightforwardly identiied. For example, OpenStack uses
several tools to create and conigure its infrastructures, such as Puppet [81], Chef [79], and Ansible [23], use
coniguration iles written in diferent formats (e.g., ł.rbž, ł.yamlž, ł.shž, ł.erbž, etc.), among which these can share
format or extensions with source code iles (bash or python scripts). According to Guerriero et al. [21], one of the
most common Infrastructure-as-Code (IaC) issues is that dealing with the diferent formats of IaC tools is often
obscure to most and requires specialized personnel. They also pointed out the need to have an ontology that
deciphers the categories and relations to aid in reasoning how IaC tools or formats may it together in one context.
Yet, Guerriero et al. [21] focused just on IaC coniguration, whereas, identifying coniguration iles related to the
whole deployment and runtime of a software system can be more challenging. For instance, developers might
need to know which coniguration iles they need to change, architects might need to identify the coniguration
iles to better model the coniguration system, novices might need to know the existing conigurations and
users might need to know which coniguration iles to change to deploy a software system such as OpenStack.
Furthermore, Sayagh et al. [65] found that practitioners have a lack of ownership over the coniguration iles,
allowing any developer to change such iles. As a side efect, developers might not be aware and keep track of all
the existing coniguration iles. On top of that, Sayagh et al. [65] inding is limited to runtime coniguration iles,
suggesting that it can be more challenging to identify all the possible types of coniguration iles of a software
project. For example, an OpenStack developer łdo[es] not believe there is a ixed standard for coniguration
iles vs. codež 3. Another example of a user who was not able to correctly conigure OpenStack before their
łelder colleaguež igured out the right ile to change4, which is interestingly a Python ile. In fact, knowing the
coniguration tools that are used in a project (e.g., Ansible, Puppet, Terraform) might not be enough to know

1https://www.entrepreneur.com/article/389265
2https://www.theverge.com/2019/3/14/18265185/facebook-instagram-whatsapp-outage-2019-return-back
3https://lists.openstack.org/pipermail/openstack-discuss/2021-January/019940.html
4https://stackoverlow.com/questions/34060140/what-conig-ile-does-openstack-poppy-use-how-to-log-the-debug-info-when-popp
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all the coniguration iles for a project as certain coniguration iles might not follow a standard coniguration
format and can be as similar as a source code ile (e.g., python or bash script).
Existing studies on coniguration maintenance are limited to a subset of the coniguration iles or types, and

these studies’ indings might not generalize to the whole coniguration system. For example, the slow evolution
of Dockeriles and Docker-compose iles observed by Cito et al. [12] and Ibrahim et al. [25] might not generalize,
as Dockerile and Docker-compose ile are just two iles among other iles that contribute to a software system’s
coniguration. For instance, a Dockerile might be called from another coniguration ile (e.g., Docker-compose,
bash script, etc.), and a Dockerile can invoke other iles (e.g., bash scripts, environment iles), which are also
used for the coniguration of software infrastructure. Moreover, these iles can be automatically generated from
other iles that might require more maintenance eforts. Hence, their indings of the estimation of coniguration
maintenance eforts are rather under-estimated, as there can be more iles involved for the coniguration of a
software system.
Therefore, as a irst step to improve the quality (e.g., comprehension, maintainability, debugging errors) of

the whole coniguration system instead of single iles or types of software coniguration and to help developers
better identify and understand the coniguration system of a project, we irst wish to understand what is a
coniguration system and how can we help developers and researchers automatically identify such a system. In
fact, we aim in this paper to irst understand what types of coniguration iles a software system (e.g., OpenStack
as our case study) can use during deployment and run-time, and how we can automatically identify coniguration
iles and classify them under diferent types. To the best of our knowledge, no prior studies investigated what
iles can compose a coniguration system, what purpose they serve, and how to identify and classify these iles
automatically. The main scope of our paper is on the coniguration iles that are used for deployment and run-time.
Thus, we exclude coniguration iles associated with testing and build tools, such as Tox and Gradle.

Similarly to many previous studies [27, 45, 80, 89] that focused on studying OpenStack being the łmost
widely deployed open source cloud software in the world5ž, we also focus on OpenStack. In this paper, we conduct
an empirical study on the 635 projects of OpenStack to (1) qualitatively identify what types of iles can

constitute a coniguration system, (2) leverage machine learning models to automatically identify

coniguration iles, and (3) classify coniguration iles into diferent types based on their usage in a

software system life cycle.
In particular, we deine our irst research question (RQ1) as follows:

- RQ1: What are the main types of iles that constitute a coniguration system?

Via a card sorting [91] qualitative analysis on 1,756 OpenStack coniguration iles, we identiied nine con-
iguration types that cover the deployment of OpenStack and its run-time customization. Our investigation
reveals that these types of coniguration iles are interrelated. For instance, speciic coniguration iles
are being operated during the deployment and can create other coniguration iles that end-users can use
during run-time. We also observe that besides infrastructure coniguration iles that are the direct inputs of
the infrastructure as code (IaC) tools, other coniguration iles are also part of the infrastructure creation.
Our results suggest future studies to investigate the maintenance of the whole coniguration

system, rather than focusing on a subset of coniguration iles.

Our qualitative analysis of RQ1 shows that identifying coniguration iles into diferent types is not straight-
forward. While we found that four types of coniguration iles could be directly identiied from the OpenStack
documentation, ive types of coniguration iles can be written using the same programming language as ordinary
source code iles, such as Python and bash scripts. We also observe that the same ile extensions are used to
create diferent coniguration types, which align with the hypothesis of the OpenStack developer, who stated

5https://www.openstack.org
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that ł[he] do[es] not believe there is a ixed standard for coniguration iles vs. codež6. For example, Yaml iles can be
used for three diferent types of deployment conigurations. Therefore, we provide two machine learning models
to identify which iles are related to coniguration, and then classify each identiied coniguration ile into one of
the nine types obtained from RQ1. We evaluate our machine learning models via the following two research
questions:

- RQ2: How accurately can we classify coniguration from non-coniguration iles?

Our model achieved a good performance in identifying coniguration and non-coniguration iles, with a
median AUC of 0.91, a median Brier score of 0.12, a precision that ranges between 0.78 and 0.86, and recall
ranging between 0.77 and 0.83. We also observe that manually labeling a sample of data, as small as 100
iles, would be enough to train a model that reaches a median AUC higher than 0.69. Our results suggest
future work to leverage our approach to identify coniguration from non-coniguration iles.

- RQ3: How accurately can we classify the diferent types of coniguration iles?

The combination of TF-IDF with the Random Forest (RF) into a multi-class classiier achieved a median
weighted AUC of 0.92, a median Brier score of 0.04, a median weighted precision of 0.84, and a median
weighted recall of 0.82. We also observe that one has to manually label only 100 coniguration iles to
reach a median weighted AUC higher than 0.75. Similarly to RQ2, we suggest future studies to leverage

machine learning models to classify the coniguration iles into diferent types.

Take-home message. While prior studies focused on the maintenance of software coniguration, their
evaluation cannot be generalized to the whole coniguration system. Coniguration systems involve several types
of coniguration iles that are typically interrelated, for which we proposed two models to irst identify, then
classify into the nine types, respectively. Our irst model requires labeling a minimum of 100 coniguration and
non-coniguration iles to a reach a median AUC of 0.69. Our second model requires labeling a minimum of 100
iles to reach an AUC of 0.75. Our results suggest future studies on the maintenance of coniguration systems to
irst investigate what iles constitute a coniguration system for a case study and leverage a machine

learning model to classify them.

Replication package. Our replication package is publicly available for future replications [57]. In particular,
we provide (i) our datasets, (ii) scripts for training machine learning algorithms, and (iii) details about the
validation results along with the built models.

Paper organization. The rest of the paper is organized as follows. First, Section 2 presents a background
about software coniguration. Section 3 discusses our qualitative analysis and the nine types of coniguration
iles that we identiied. Section 4 discusses our automatic approach that leverages machine learning to classify
a coniguration ile into the nine types. Section 5 discusses our threats to validity. Section 6 outlines existing
studies on software coniguration. Finally, we conclude the paper in Section 7.

2 BACKGROUND

This section aims to provide background about software and infrastructure coniguration.

2.1 Background

We provide in this subsection further details about software coniguration, as well as, the infrastructure-as-code
tools (IaC) that are used for the coniguration of infrastructures.

2.1.1 Sotware configuration. Software coniguration is a mechanism used at diferent levels of a software life-
cycle, from the customization of an infrastructure for the deployment to the customization of the execution of a

6https://lists.openstack.org/pipermail/openstack-discuss/2021-January/019940.html
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software system at run-time [65]. For instance, a software system can specify its infrastructure requirements via
a set of coniguration iles. For example, a developer can specify which software systems and libraries to install
for the infrastructure of a software system. Similarly, developers can specify certain permissions and accesses,
such as which users can access iles and which ports can be exposed. All of these speciications can be written as
code in dedicated coniguration iles. A developer can also specify the deployment of a software system in the
Cloud, such as the number of instances for a software system and the amount of Cloud resources. Similarly, the
end-users of a software system can customize its behavior at run-time using speciic coniguration options, which
might be available under diferent formats. For example, a software system can provide a set of coniguration
options accessible to the end-users as a set of key and value pairs that are provided in diferent coniguration iles.

2.1.2 Configuration Infrastructure Tools. When developers write coniguration iles for the infrastructure; such
iles are used as input for tools dedicated to creating an environment. Several coniguration tools exist for
the creation of an environment, which are known as the Infrastructure-as-Code (IaC) [37] tools. Puppet [81],
Chef [79], Ansible [23], and Terraform [7] are among the most popular IaC tools. Each of these tools can be
used for diferent purposes of the infrastructure coniguration. Some of these tools (e.g., Terraform) are used to
provision (e.g., create a Cloud environment, set up a irewall) an infrastructure, which will be conigured using
other IaC tools (e.g., Ansible) by installing a set of resources (e.g., a web server) to deploy a software system.
These tools heavily rely on coniguration iles that developers write for the deployment purposes of a software
system.
While some existing tools expect coniguration iles with a predeined format, they represent only one type

of coniguration iles and such iles can still leverage other coniguration iles and can be invoked from other
coniguration iles that do not necessarily follow a speciic format or have a dedicated ile extension. Thus, we
aim by the following sections to investigate what would be these iles that together constitute what we refer to
as a łconiguration systemž.

3 QUALITATIVE IDENTIFICATION OF THE CONFIGURATION SYSTEM

This section reports our qualitative analysis to understand the types of coniguration iles that constitute a
coniguration system. In particular, our qualitative study addresses the following research question:

RQ1: What are the main types of files that constitute a configuration system?

Motivation: This research question aims to qualitatively identify the diferent types of iles that compose a
coniguration system. For instance, prior studies [12, 27] investigated the maintenance and evolution of diferent
coniguration iles. However, they considered just a few types of iles that typically use a speciic format, making
them trivial to identify, such as Puppet iles (i.e., coniguration iles with the ł.ppž extension). Thus, prior studies’
indings might not generalize to the whole coniguration system. For example, while prior work by Hanakawa
and Obana [22] observed that coniguration iles with the ł.ppž extension rarely change, their indings are limited
to only one type of coniguration iles and do not apply to the whole coniguration system. Similarly, Jiang et
al. [27] found the existence of some co-evolution trends between infrastructure coniguration iles and other
artifacts (e.g., build iles). However, their indings of the co-evolution might be more important when studying the
whole coniguration system, which can mislead managers when estimating the cost of coniguration maintenance.
Meanwhile, there are no studies that identify all coniguration artifacts that compose a coniguration system.
Therefore, this research question aims to qualitatively identify what types of iles can compose a coniguration
system of a highly-conigurable software system. While we expect to ind some types of coniguration iles
associated with a predeined ile extensions, we aim at identifying whether there are other types of coniguration
iles that exist and how diicult is it to identify them.

ACM Trans. Softw. Eng. Methodol.
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Fig. 1. Approach of the identification of configuration system (RQ1).

Approach: We qualitatively leverage the documentation and prior coniguration-related changes (i.e., release
notes) to identify the various types of iles that constitute the coniguration system of OpenStack. From these two
data sources (OpenStack documentation and release-notes), we obtain a set of iles, mined from all OpenStack
repositories. We aim to classify these obtained iles under diferent types of coniguration iles using the Open
Card Sort technique [91]. The Card Sort is a widely used qualitative method that consists of manually sorting
similar data (i.e., coniguration iles in our context) into clusters, which are then manually labeled according to
the principal and common topic (i.e., coniguration ile type in our context) to a cluster. Card sorting has become
a standard tool and has been commonly used in a large body of qualitative studies in software engineering
(e.g., [39, 46, 64, 65, 71, 91]). The qualitatively studied coniguration iles were obtained by following diferent
steps that are shown in Figure 1 and further explained as follows:

Leveraging documentation to understand the coniguration of OpenStack: By manually investigating the docu-

mentation of OpenStack7, we observe that it can be conigured using a set of coniguration options8, which are
deined in iles that respect the INI ile format (not only ł.iniž iles). We identiied 518 iles that respect the INI
ile format in OpenStack (step 1). These identiied iles result from the characteristics of iles that are deined in
OpenStack documentations. Then, we randomly select a statistically representative sample (step 2) out of the
population size of the identiied iles (i.e., 518 iles) of Step 1. A conidence level of 95% and a conidence interval
of 5% means that if we repeat the same experiment multiple times, we will reach the same conclusion with a
margin of error of 5% in 95% of the cases. Eventually, we end up with a sample size of 333 iles (step 2) to further
investigate using the Card Sort technique (Step 10), as discussed at the end of this approach.
We also observed from the documentation that the infrastructure of OpenStack is typically conigured and

created by leveraging ive diferent infrastructure-as-code (IaC) tools including Puppet, Chef, Ansible, Helm, and
Juju (step 3). We then qualitatively investigate the documentation of each of these IaC tools to identify their

7https://docs.openstack.org/ocata/conig-reference/
8https://docs.openstack.org/ocata/conig-reference/conig-format.html
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Fig. 2. An example of a configuration related release note in the Nova project.

related coniguration iles (step 4). For example, the Puppet IaC tool is based on coniguration iles with the “.pp”
extension. Similar to Step 1, we use a regular expression by which we identify 12,056 IaC potential iles. From
these iles, we select a representative random sample (conidence level = 95%, and conidence interval = 5%) of
1,028 iles (Step 5) to further investigate using the Card Sort technique (step 10).

Prior coniguration-related changes: We extend our analysis by investigating the release notes of the six pri-

mary services of OpenStack (Glance, Horizon, Keystone, Nova, Neutron, and Swift)9. For instance, OpenStack
attaches a release note ile to the commits where a change related to łfeatures, bug ixes, etc.ž is performed,
which we leverage to identify coniguration-related changes. Figure 2 presents an example of a coniguration-
related release note ile10 in the Nova project. In that release, developers add a new coniguration option (i.e.,
“versioned_notifications_topics”) and update the appropriate iles to access and use that new option in
the source code. Similarly, they update the unit tests ile łtest_rpc.pyž to test the new coniguration option.

In particular, we select the releases with a release note that mentions at least one of the following coniguration-
related keywords: (conig*, infra*, setting, deploy*, setup) (Step 6). We found 178 release notes (commits) with 350
co-modiied iles, which we manually examined to ilter out iles unrelated to coniguration (Step 7). We ended
up with 120 coniguration iles, which we added to our Card Sort analysis (Step 10).
We observed that bash scripts could also be used for coniguration during our manual analysis of the

coniguration-related releases (Step 7). For example, in one of the studied release notes11, we observe an interesting
example of a bash script that is used for generating another coniguration ile. Therefore, we extended our analysis
by studying bash scripts. Using ile extensions, we identify 2,367 bash scripts (Step 8), from which we select a

9https://www.redhat.com/en/topics/openstack
10https://github.com/openstack/nova/blob/master/releasenotes/notes/Make-versioned-notiications-topics-conigurable-

a4baad995a74a076.yaml
11https://github.com/openstack/neutron/commits/master/releasenotes/notes/conig-ile-generation-2eafc6602d57178e.yaml
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representative random sample (conidence level = 95%, conidence interval = 5%) of 331 bash scripts. We irst
manually analyze these bash script iles to exclude 56 bash scripts that are not related to coniguration and end
up with 275 bash script iles (Step 9) to qualitatively study using the Card Sort technique (Step 10).

Card sorting: Using a mixed card sort technique [91], we qualitatively classify the 1,756 coniguration iles

into diferent types (Step 10). The mixed card sort combines both open and closed card sorting techniques,
allowing us to create new categories while also utilizing a predeined set of categories. Precisely, we derive our
categories based on the role of the coniguration iles. For each of the collected 1,756 coniguration iles from our
manual analysis, we use the mixed card sorting technique to label the iles under their correspondent types of
coniguration iles using the following four steps. Note that we irst understand the goal of a ile by manually
inspecting its content. From our comprehension of the types coming from the reading of the content of the iles,
from our inspection of the documentation and commit messages to select iles (as discussed in our selection
process), we also deine under which phase each type of coniguration ile is used and what is the link between
these types.
Step 10.1: Initial coding of coniguration iles. In the irst iteration, each of the 1,756 coniguration iles

that were obtained following the approach of Figure 1 are reviewed by two raters (i.e., the irst author and
another co-author) independently. The irst author manually labeled all the 1,756 coniguration iles, and each
co-author labeled 585 iles. In this iteration, we started with four labels (types of coniguration iles): externals,
infrastructure-templates, infrastructure-variables, and infrastructure-setup. These types were identiied from the
documentation of OpenStack and the documentation of the IaC tools (i.e., Puppet, Chef, Ansible, Helm, and Juju).
In this irst iteration, raters were allowed to add more types of coniguration iles. For each of the authors, it took
approximately 15 work days to inish this step.
Step 10.2: Discussion of the labels (i.e., types of coniguration iles). In this iteration, through several

meetings, we discuss the types of coniguration iles that each rater identiied, to end up with the nine types of
coniguration iles.

Step 10.3: Review the types of coniguration iles. In this iteration, each rater reviewed their classiication
according to the inalized labels (i.e., types of coniguration iles) of Step (b).

Step 10.4: Discussing disagreements. After Step (c), we measured the initial agreement/disagreement score
between raters using the Kripperndorf’s � [36]. When two authors tag the same ile with two diferent labels, we
consider it as disagreement. We achieved an initial agreement of �=0.79. To solve our disagreements, every two
authors need to take a second round to discuss their understanding of the coniguration goal of the ile on which
they disagree. If both authors still disagree on the classiication of a coniguration ile, a third author is invited
to the discussion. A inal agreement is considered if at least two authors agree on the same category. Once all
disagreements are re-evaluated, we re-calculate the Kripperndorf’s � to check our inal inter-rater agreement
achieving an � = 0.95 which meets the reliability requirement (� ≥ 0.8) [36].

Results: Our card sort experiment revealed nine coniguration iles used for diferent coniguration purposes
and are interestingly interconnected. We deine and provide an example for each coniguration type in Table 1
and Table 2. We report and discuss our key indings of these nine types of coniguration iles in the following.

Finding 1: We observe that OpenStack has ive types of iles to conigure it during deployment and

ive types to conigure it during run-time, as shown in Figure 3. For instance, the developers of OpenStack
prepare a set of coniguration iles that will be eventually used for the deployment of OpenStack. Such preparation
requires deining the infrastructure on top of which OpenStack can be deployed. For example, such coniguration
iles deine the communication network between the services of OpenStack, decide which packages/dependencies
to install or update, and specify the necessary resources (e.g., memory) for a new version of OpenStack. A user,
which we refer to as administrator, can decide to deploy OpenStack for their end-users. To do so, the administrator
of OpenStack can then use the infrastructure-related coniguration iles to deploy OpenStack on a Cloud platform,
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Fig. 3. A minimalist presentation of the files that compose the studied configuration system in OpenStack.

which the end-users will use. These deployment-related iles are the input of a set of tools dedicated to creating
the infrastructure (i.e., IaC tools).
After deploying OpenStack, the administrators can still customize it using run-time coniguration iles. For

example, one can conigure the ram_allocation_ratio option to increase or decrease the number of instances
running on the cloud. An administrator can also enable or disable a set of OpenStack services without redeploying
a new version of OpenStack. We observe that both of these types (i.e., deployment and run-time conigurations)
do not have just one type of coniguration ile, but multiple types of iles, as discussed in the following.

Finding 2: We observe that ive diferent types of iles can be used to conigure the infrastructure dur-

ing deployment (i.e., externals, infrastructure-creation, infrastructure-setup, infrastructure-templates,

and infrastructure-variables). Table 1 reports the diferent types of the identiied coniguration iles, the
deinitions, and examples. First, OpenStack developers create a set of łinfrastructure-creationž iles to create the
virtual environment (e.g., python virtual environment) on the hosting servers. For example, the łbuild_venv.shž
ile12 is an infrastructure-creation ile used to create a virtual environment. Interestingly, these iles, including
the last example, are not developed in a domain-speciic language; instead, they are bash iles.

12https://github.com/openstack/devstack/blob/master/tools/build_venv.sh
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Once an environment is created, a set of scripts that we refer to as łinfrastructure-setupž iles are available to
set up the infrastructure. These iles are used for the customization of the infrastructure environment through
the speciication of diferent types of resources (e.g., service, ile, package, accounts, permissions, etc.) to be
deployed. Other coniguration iles, which are used during run-time, can be used to control the behavior of
the deployed resources, e.g., by enabling/disabling services13. These infrastructure-setup iles are written in a
domain-speciic language. For example, the Puppet IaC tool takes as input an infrastructure-setup ile written in
the Puppet programming language (a ile with łppž extension). During the deployment of OpenStack, users can
deine certain resource-related coniguration options in a set of łexternalž iles. For example, one can conigure
the memory required for the to-be deployed OpenStack release in an external ile. Similarly, an external ile can
specify the network communication between the services of OpenStack. These coniguration iles could also
be created by IaC tools to be used during run-time of OpenStack. Thus, the external iles are shared between
deployment and run-time of OpenStack.
During the execution of an IaC tool to create an infrastructure, the IaC tool can automatically generate new

łexternalž coniguration iles from łtemplatesž and łvariablesž iles. Basically, the łvariablesž iles are used to store
dynamically generated values of settings based on the environment. These iles will be later invoked by the
łtemplatež iles that will describe the content of a ile to be generated (e.g., an external ile), with the returned
dynamic values. A template ile can also be customized with a set of commands and if-conditions to customize
the generated ile to a speciic environment. A typical example that can be coded in a template ile is to attribute
diferent IP addresses to diferent environments dynamically.

An example is shown in Figure 4, in which the infrastructure categories (infrastructure-setup, infrastructure-
template, and infrastructure-variables) are combined to generate an external ile. First, the łkeystone.conf.j2ž
łinfrastructure-templatež ile14 deines the content of the to-be generated łexternalž ile with a set of con-
iguration options, such as łconnection_recycle_timež. These options are given dynamic variables (such
as, ł{{database_connection_recycle_time}}ž) in order to adapt the coniguration options to diferent con-
texts. The dynamic value of the variable ł{{database_connection_recycle_time}}ž will be read from the
łinfrastructure-variablesž ile łall.ymlž15 during the creation of an environment using an IaC tool (e.g., Ansible).
Mapping a set of łinfrastructure-templatež iles to the appropriate łinfrastructure-variablesž iles can be cus-
tomized from the łinfrastructure-setupž iles. In the łconig.ymlž łinfrastructure-setupž ile16, users deine a list of
tasks to be applied on the hosting server. In our example, the tasks consist of copying over the łkeystone.confž
ile. Once this task is executed, the dynamic content of the łkeystone.conf.j2ž łinfrastructure-templatež ile
will be replaced by their values from the łall.ymlž łinfrastructure-variablesž ile. Finally, the IaC tool would copy
the content of the łkeystone.conf.j2ž łinfrastructure-templatež ile to the newly created łkeystone.confž
łexternalž coniguration ile.

Finding 3: We observe ive types (i.e., external, reader, declaration, environment-access, and resource-

operations) of coniguration iles that are related to the coniguration of OpenStack during run-time. We
report in Table 2 the types of run-time coniguration iles. For instance, administrators can conigure OpenStack
through the coniguration options deined in the łexternalž iles, such as enabling the login_password option to
enforce the authentication of the end-users of the deployed OpenStack. Furthermore, OpenStack administrators
can conigure a set of łenvironment-accessž coniguration iles that deine the required authentication information
(e.g., cloud URL, login, password) to access diferent clouds.

13https://puppet.com/docs/puppet/5.5/types/service.html
14https://github.com/openstack/kolla-ansible/blob/master/ansible/roles/keystone/templates/keystone.conf.j2
15https://github.com/openstack/kolla-ansible/blob/master/ansible/group_vars/all.yml
16https://github.com/openstack/kolla-ansible/blob/master/ansible/roles/keystone/tasks/conig.yml
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Table 1. Definition and example of the identified deployment configuration files.

Category Deinition Example Number

External The external iles customize a set of coniguration options
for OpenStack projects resources (e.g., memory) that are
required during deployment and run-time of OpenStack.
An external ile follows an INI ile format with a [group

section] describing the set of the key = value conigura-
tion options.

For instance, a user can specify how many times to recon-
nect with a server using the http_request_max_retries
option in the external ile nova.conf [56], which
contains a set of coniguration options as follows:
[keystone_authtoken]

http_connect_timeout = None

http_request_max_retries = 3

256

Infrastructure-
Creation

The infrastructure creation are coniguration iles used to
create the virtual environment where OpenStack will be
deployed. These iles are dedicated to bring up a complete
virtual environment before the installation of OpenStack
services using the infrastructure-setup iles.

The setup_pip.sh [55] coniguration ile is dedicated to
install the łpipž package management system for python,
and speciies a set of coniguration options that are related
to pip. For example, the setup_pip.sh ile contains the
following snippet to upgrade the virtual environment:
# Upgrade to the latest version of virtualenv

pip install –upgrade $PIP_ARGS

virtualenv==20.7.2

125

Infrastructure-
Setup

The infrastructure setup iles are used to install diferent
types of resources for OpenStack services on the environ-
ments created by the infrastructure-creation iles. For exam-
ple, the OpenStack Nova, Keystone, and Neutron services
have their own dedicated infrastructure-setup iles to install
their required resources. Besides, these iles are dynamic,
as they could be used during the production environment
to update resources state according to the requirements of
the managed infrastructure.

The following example provides a minimalist code snippet
of the IaC puppet łinfrastructure-setupž coniguration ile
łinit.ppž [48], which speciies a ile to be created under a cer-
tain directory with certain permissions for a nova service
user.
file { ’/var/lib/nova/.ssh’:

ensure => directory,

mode => ’0700’,

owner $=>$ $::nova::params::user }

The following example is a snippet from the IaC Ansi-
ble łinfrastructure-setupž conig.yml [51] ile showing how
an łinfrastructure-setupž can involve an łinfrastructure-
templatesž keystone.conf.j2 ile to get the keystone.conf ex-
ternal ile (discussed in Table 2).
template:

src: tamplates/keystone.conf.j2

dest: keystone.conf

365

Infrastructure-
Templates

IaC tools use łinfrastructure-templatesž to automatically
generate external coniguration iles. These template iles
can have the static structure of an external conigura-
tion ile with some dynamic values that can be stored
in an łinfrastructure-variablesž coniguration ile. An
łinfrastructure-templatesž coniguration ile can also imple-
ment a whole algorithm (e.g., with if-checks and for loops)
to automatically create an external ile.

The keystone.conf.j2 infrastructure template [52] deines a
coniguration option with a dynamic value. Thus, by run-
ning an IaC tool, the dynamic value will be replaced by a
value that is stored in an łinfrastructure-variablesž ile to
automatically generate the keystone.conf external conigu-
ration ile.
connection_recycle_time = {{

database_connection_recycle_time}}

337

Infrastructure-
Variables

IaC tools generate customized conigurations to deal with
the diferences between software systems. This customized
coniguration is rendered in the łInfrastructure-Variablesž
iles, where only coniguration variables are deined. These
variableswill be dynamically assigned diferent values based
on the system requirements. Finally, the łinfrastructure-
templatesž will retrieve these dynamically assigned values
to create the customized coniguration ile.

The dynamically deined variable in the Infrastructure-
Templates ile is stored in the Infrastructure-Variables ile
all.yml [53] with its default value, as follows:
#Database options

database_connection_recycle_time: 10

database_port: “3306”

326

Moreover, OpenStack centralizes the coniguration options that administrators can change in a set of łdec-
larationž iles. The goal of these iles is to deine and load all the information about the coniguration options
coming from the command-line and parse them using a conig manager. Such information consists of the name
of the options, their types (e.g., integer), whether they will be deprecated; if so, after which version, their detailed
description, etc. These iles prioritize diferent sources over each other. For example, if two values for the same
option are provided from the command line and the coniguration ile, respectively, the value coming from the
command line will be prioritized over the value coming from the coniguration ile. Thus, developers can add
new coniguration options to these iles from the command-line, after checking whether there exists no similar
coniguration options to avoid duplicated or conlicting coniguration options. Similarly, admins can use these
łdeclarationž iles to parse and understand the existing coniguration options and how related they are. The
declared coniguration options in these iles will be stored in a łCONFž object that loads the default values of all
coniguration options and will eventually be read from the łreaderž iles. These łreaderž iles are used to access
all coniguration options values from the łCONFž object deined by the łdeclarationž iles.
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Infrastructure-

Variables file

Infrastructure-

setup file

Infrastructure-

Template file

External file

Create target external file

ANSIBLE 

IAC tool

# specify default value of a variable 

database_connection_recycle_time: 10

#define the dynamic value of an option 

as a variable 

connection_recycle_time = 

{{database_connection_recycle_time}}

# description of the task 

-   name: Copying over keystone.conf 

         vars: # specify the location of the variables file 

         Keystone: /ansible/group_vars/all.yml 

         template: # specify the template module 

                #the location of the template file 

             src:“templates/keystone.conf.j2” 

             # the location of the target external file 

             dest: “/etc/keystone/keystone.conf”

#new option value dynamically defined 

connection_recycle_time = 10

Fig. 4. A minimalist example of an łexternalž file creation through Ansible. An infrastructure tool (e.g., Ansible) read the
łinfrastructure-setupž configuration file that specifies which łinfrastructure-templatesž configuration files to use with which
łinfrastructure-variablesž configuration files.

Finally, one can perform resource-related operations (such as, enable/disable the service, create the service-
related accounts and packages, upgrade resources, etc.) after deploying OpenStack. For instance, one can en-
able a new nova-compute service by setting the łenable_new_servicesž to true in the łresource-operationsž iles.
Another example is the łplugin.shž ile [50], which contains a set of functions for operating the Aodh ser-
vice. That ile installs an Aodh client using the function łinstall_aodhclient()ž, create Aodh accounts using the
ł_aodh_create_accounts()ž.

Finding 4: Identifying the types of coniguration iles is not straightforward as several coniguration

iles share similar formats with the source code iles, and the same ile format can be used for diferent

types of coniguration iles. By manually investigating the extension of each of the nine types of coniguration
iles, we searched whether each of the obtained extensions is used for any non-coniguration iles in the OpenStack
project. Through this analysis, we observe that the nine types of coniguration iles have ten ile extensions,
as shown in Table 3. Seven ile extensions can be used at the same time for a coniguration ile as well as a
non-coniguration ile. For example, the łreaderž and łdeclarationž coniguration iles are written in the same
programming language (python) similar to any ordinary source code iles. Similarly, we observe that three
coniguration iles share the same ile extension. For example, łenvironment-accessž, łinfrastructure-setupž, and
łinfrastructure-variablesž can be all written in YAML iles. However, we observe certain YAML iles that are not for
coniguration. For example, the łqemu-accept-vmxnet3-nic.yaml17ž is used for łdocumentationž. We also observe
examples of iles that are JSON iles and not for coniguration, such as the łerrors.json18ž ile that is for logs of
some test errors. The only type of coniguration iles that has two dedicated ile extensions (ł.j2ž and ł.erbž) is the
łinfrastructure-templatesž which are templating engines. Thus, classifying diferent coniguration iles might not
be as straightforward as looking at ile extensions.

17https://github.com/openstack/nova/blob/master/releasenotes/notes/qemu-accept-vmxnet3-nic.yaml
18https://github.com/openstack/xstatic-angular/blob/master/xstatic/pkg/angular/data/errors.json
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Table 2. Definition and example of the identified run-time configuration files.

Category Deinition Example Number

External The external iles deine a set of coniguration options to
customize the execution (e.g., timeout of shutting down a
server instance) of OpenStack after its deployment.

A user can adjust the shutdown timeout of a server using
the shutdown_timeout option in the external nova.conf
ile [56].

256

Environment-
Access

The environment variables are the settings or rules that
users need to run OpenStack or access OpenStack resources.
For example, users must authenticate to the Keystone ser-
vice to get authorization to perform an action. Thus, users
invoke the environment variables to this end.

The following example is a snippet of the cloud conig-
uration ile clouds.yaml [54] containing all the settings
required to connect to cloud instances.
clouds:

devstack:

auth:

auth_url:

http://192.168.122.10:35357/

77

Reader These are the source code that read the coniguration op-
tions that are stored in the łCONFž object deined by the
declaration iles.

The following is an example of reading a coniguration
group keystone_authtoken deined in the reader conigu-
ration ile api_utils.py [49] of the project cinder.
CONF = cfg.CONF

CONF.import_group(’keystone_authtoken’)

56

Declaration The declaration iles are the source code iles that host all
the information about coniguration options, such as their
names, goals, comments, types, state, etc. as well as to which
source code objects they are mapped (i.e., in which option
groups an option’s value will be stored at runtime). To add
a new coniguration option, a developer declares it from the
command-line and parse it from these declaration iles using
a conig manager. Similarly, to understand coniguration
options, users can refer to these łdeclarationž iles. These
iles can be considered as a łsingle-source-of-truthž for the
coniguration options of OpenStack.

In the following code snippet, from the api.py declaration
coniguration ile [47], the auth_strategy coniguration
option, its default value, to which object it maps is declared:
auth_opts = [

cfg.StrOpt(“auth_strategy”,

default=“keystone”)]

CONF.register_opts(auth_opt)

61

Resource-
Operations

The goal of the resource-operations iles is to perform op-
erations after resource installation, such as enabling or dis-
abling existing services, generating coniguration iles, up-
grading resources, etc.

The plugin.sh ile [50] has a source code snippet for disabling
the aodh processes.
function stop_aodh {

if [ “$AODH_DEPLOY” == “mod_wsgi”]; then

disable_apache_site aodh

fi }

153

Table 3. Extensions of the identified configuration and non-configuration files in our manually analyzed documents.

Types .py .j2 .conf .sh .ini .yaml .rb .erb .json .pp .aio
External
Declaration
Reader
Resource_Operations
Environment_Access
Infrastructure_Creation
Infrastructure_Setup
Infrastructure_Variables
Infrastructure_Templates
Non-coniguration iles

Summary for RQ1: Via a qualitative analysis of a representative corpus of 1,756 coniguration iles, we
identiied nine types of iles that constitute the OpenStack coniguration system. These nine types are
scattered in diferent ile extensions that are shared with the source code. This makes the distinction of
diferent types of coniguration iles challenging, which motivates the need for an automated approach to
classifying the coniguration iles. Our results suggest that future research should consider the

whole coniguration system rather than a subset of coniguration iles.

4 AUTOMATIC CLASSIFICATION OF OPENSTACK CONFIGURATION FILES

This section describes our approach to automatically identify (1) coniguration from non-coniguration iles
and (2) classify coniguration iles into the nine types of RQ1. The results of RQ1 revealed the co-existence
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of nine diferent types of coniguration iles in a coniguration system. Classifying these coniguration iles is
important (1) for developers who need to continuously maintain and evolve their coniguration systems, and (2)
for researchers who want to investigate the whole coniguration system rather than just certain coniguration
iles. However, the classiication of coniguration iles into diferent types is not straightforward, as some types
of coniguration iles are often written in the same language as other ordinary source code iles. In addition,
diferent types of coniguration iles can use the same ile extensions and formats (e.g., python and bash iles), as
discussed in RQ1. The inherent challenges related to distinguishing coniguration iles from non-coniguration
iles are also pointed out by OpenStack developers, as one of the developers stated that ł[he] do[es] not believe
there is a ixed standard for coniguration iles vs. codež.

We leverage machine learning models to help practitioners and researchers identify diferent coniguration iles
and classify them under the categories of RQ1. We opt for a machine learning model, instead of a simple grep or
simply using the iles extensions to identify coniguration iles and their types, as leveraging a machine learning
model will be more usable, accurate, and requires less efort from practitioners compared to a keyword-based
approach. For instance, we found in RQ1 that coniguration iles and ordinary source code iles can share the
same ile’s extension, such as ł.pyž, ł.shž, and ł.rbž, so using iles extensions to identify coniguration iles or
to classify them under diferent categories might not be accurate. On top of that, we observe some iles with
coniguration related extensions (e.g., ini), which are not for coniguration. For example, the łtox.iniž ile19 is for
testing and the łerrors.jsonž ile20 is for logs. While typical coniguration-related keywords like łconf*ž could help
ind coniguration iles, some non-coniguration iles might include coniguration-related keywords. Moreover,
keywords could be susceptible to developers subjective judgements. That is, one needs to grep all possible
variations of a keyword, which can lead to complex grep commands that can overlap for each category. On the
other side, our goal of leveraging machine learning models it to automatically learn these keywords. We also think
that classifying a coniguration ile under diferent categories by using keywords might be more challenging,
as diferent types of coniguration iles can share keywords and such an approach will require developers to
investigate diferent combinations of keywords. Therefore, we leverage machine learning models that learn these
keywords and their weights that we investigate through the following research questions:

• RQ2: How accurately can we classify coniguration from non-coniguration iles?
• RQ3: How accurately can we classify the diferent types of coniguration iles?

In the following, we address each research question. In particular, for each research question, we provide its
motivation, our approach to answer the research question and the obtained results.

RQ2: How accurately can we classify configuration from non-configuration files?

Motivation: The goal of this research question is to help developers automatically identify coniguration iles
since they have no standard format, are intermixed with ordinary source code iles as found in RQ1, and no
ownership exists over coniguration iles as suggested by Sayagh et al. [65] and for diferent scenarios which
are discussed in our introduction. Automatically identifying coniguration iles can also help researchers who
wish to study the maintenance of the whole coniguration system instead of single iles or types of coniguration.
Therefore, the goal of this research question is to investigate the performance of diferent machine learning
models to classify coniguration from non-coniguration iles. Moreover, we investigate the amount of eforts
required to train a model with a decent performance. Speciically, we measure such eforts in terms of the number
of iles that one has to manually label to train a model.

Approach: In this research question, we leverage machine learning models to classify coniguration from
non-coniguration iles and measure the eforts required on manually labeling iles for our classiication models.

19https://github.com/openstack/cloudkitty/blob/master/tox.ini
20https://raw.githubusercontent.com/openstack/xstatic-angular/master/xstatic/pkg/angular/data/errors.json
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Training and Testing our Classiication Models: To automatically identify coniguration fromnon-coniguration

iles, we evaluate ive machine learning models by following the approach depicted in Figure 5. Our dataset for
training and testing our models consists of the 1,756 coniguration iles that we qualitatively studied in RQ1, as
well as another set of 1,756 non-coniguration iles that we randomly selected from OpenStack (Step 1). Overall,
our dataset consists of a total of 3,512 iles. To construct our dataset for RQ2, we irst needed to decide about
the distribution of coniguration iles compared to non-coniguration iles to relect real-life scenarios. Since
the approach we followed to obtain the coniguration iles of RQ1 do not guarantee the identiication of all the
coniguration iles of OpenStack. Instead, the approach of RQ1 is just to cover enough iles to manually study, for
which we are sure that they are coniguration iles and represent a large enough distribution to identify most of
the types of coniguration iles. Thus, we do not know the real distribution of coniguration and non-coniguration
iles in OpenStack. Therefore, we irst opted for a balanced dataset distribution of 50% of coniguration iles
and 50% of non-coniguration iles and also experimented with the ratio of 95%/5%, 90%/10%, 85%/15% down to
50%/50% of non-coniguration/coniguration iles with a 5% decrement to check if our evaluation is consistent
among diferent distributions of coniguration and non-coniguration ratios. As we did not observe any statistical
diferences, we decided to report our results based on the balanced dataset. We pre-process the 3,512 iles (Step
2) to end up with a dataset, which we split into training and testing datasets (Step 3). Each ile of our training
dataset (i.e., coniguration and non-coniguration) is transformed to a numerical vector by leveraging the TF-IDF
algorithm (Step 4). We use these numerical vectors for training our models (Step 5-8), which we test by leveraging
our testing dataset (Step 9). The following describes in details each of our nine steps for training and evaluating
our machine learning models:
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Fig. 5. Our approach to train and test our configuration and non-configuration files classifiers.

• (Step 1) Files labeling: We create a corpus of 3,512 coniguration and non-coniguration iles to train our
model. The corpus consists of the 1,756 manually inspected coniguration iles of RQ1. We label all of
these iles as łconigurationž, whereas we followed a semi-automated and manual iterative process to
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identify 1,756 non-coniguration iles. To obtain these iles, we irst exclude all the iles that were obtained
during the process of our data collection of the coniguration iles, not just the 1,756 iles that we manually
analyzed (Step 1, 4, 6, and 8 of Figure 1). Such a process is to eliminate the maximum possible number
of iles that could be related to coniguration. To further reduce the chances of selecting coniguration
iles, we iteratively deine a set of keywords (the inal set of keywords that we used are: łconf*ž, łinfra*ž,
łparameter*ž, łsetting*ž, łdeploy*ž, łinstall*ž, and łsetupž) that should not be in the path of the selected
non-coniguration iles. The iterative process consists of randomly selecting 100 iles, manually analyzing
each ile by two authors to see if there is any chance for that ile to be a coniguration ile. When doubting
about a coniguration ile, we exclude it and update our set of keywords. We went through three iterations.
These three iterations were made by the irst two authors. We exclude any ile on which the two authors
either agree to be a coniguration ile, or at least one of the co-authors identify that ile as coniguration.
As a result, we end up with a dataset divided into two groups (coniguration and non-coniguration), each
with its textual content.

• (Step 2) Text preprocessing: similarly to many prior works [32, 63, 87] that modeled a textual content, we
also preprocess the content of each ile (i.e., coniguration and non-coniguration iles) through the cleaning
of stop words (e.g., I, and, does, have, etc.), which are not relevant to our two categories of iles. We also
consider the lemmatization of words, which converts each word to its basic form (e.g., converting enabled,
enables and enabling into enabl) such that TF-IDF does not consider the same word in diferent forms as
diferent words.

• (Step 3) Stratiied Bootstrapping: To make our evaluation statistically robust, we leverage 100 bootstrap
samples for training and testing our models similarly to prior studies [29, 38, 73ś75, 77, 78]. Basically, we
select a bootstrap sample to train our model (following the Steps 4-8) and leverage the out of sample data
to test that model (Step 9). We then repeat the same experiment 100 times, for each of which we leverage a
diferent bootstrap sample.

• (Step 4) Term Frequency-Inverse Data Frequency (TF-IDF): We leverage TF-IDF to transform each ile (conig-
uration and non-coniguration) into a numerical vector, which will be used as a data point for our model.
We evaluated diferent word embedding techniques, such as Word2Vec and Doc2Vec. However, we kept the
TF-IDF as it is simple, and it has been the most commonly adopted document representation technique
and its performance outperformed other embedding techniques in similar studies [8, 17]. Besides, the
TF-IDF suits our study as we are looking at giving a weight of importance to every feature based on its
occurrence in a ile category. For simpliication, we report the results of just the TF-IDF. Basically, the
dependent variable of our model is a boolean variable that indicates whether a ile is a coniguration or
a non-coniguration ile. Our independent variables consist of the numerical vector that is generated by
TF-IDF for each ile. The TF-IDF vector for a ile � consists of a set of numbers, each of which represent
the relative relevance for a given word in �. Such a word’s relevance is calculated based on the number of
times a word appears in a ile and how often the same word appears in the whole corpus of data (all of our
coniguration and non coniguration iles). The more important and unique a word is for a ile, the higher
the weight of that word for the same ile and vice versa. For example, the word “service” is not unique to
a speciic coniguration or non-coniguration ile, so its weight will be low, while the word “opts” is unique
to a low number of coniguration iles, so its weight is supposed to be large. Since each vector generated by
TF-IDF is inluenced by the whole corpus of data on which TF-IDF is executed, we leverage TF-IDF just for
the training set, so we train a model on data that has no information learned from our testing set.

• (Step 5) Feature selection: We reduce the number of features before training our models to avoid overitting
the model with many features over a few observations (i.e., iles). Thus, we improve our model training by
focusing on relevant features for our observation (i.e., coniguration or non-coniguration ile). Previous
research on text classiication [11, 34, 58, 86] demonstrated that the Pearson’s chi-square test [41] has a
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positive impact on a model’s performance as a feature selection technique. Pearson’s chi-square would
generate a contingency table of the frequency of features’ occurrence in the classes (categories). We mainly
focus on whether a feature (word) �� and a category � � are independent. If �� and � � are independent, we
cannot use �� to determine whether the document belongs to � � . The Pearson’s chi-square test measures
the relevance between �� and � � . The higher the Pearson’s chi-square score between �� and � � , the more
relevant �� is and the more probable to be considered as a relevant feature. Thus, all features of �� will be
sorted out based on their Pearson’s chi-square scores to be selected as relevant for each category � � . Note
that we ensured that our data satisies the assumptions of the Pearson’s chi-square test [41]. In particular,
no iles belong to multiple categories (i.e., no ile is at the same time coniguration and non-coniguration
ile). In addition, in our experiments (100 bootstrap runs), the frequency of the selected features exceeded
the value 5 in more than 95% of the contingency table cells, which satisies the reliability requirement [41].
Thus, we use the Pearson’s chi-square statistical test at a signiicance level of 95% to determine how
correlated each independent variable is to our dependent variable. Note that we leverage the feature
selection by leveraging only the training dataset. For example, the Pearson’s chi-square test kept the
coniguration-related features: “opt”, “host”, “default”, “cfg”, and “conf” and discarded others
such as “language”, “protocol”, “api”, and “order”.

• (Step 6) Correlation analysis: To deal with feature collinearity, we remove the correlated features as they
can impact the interpretation of the models as pointed out by several prior works [28, 30, 42, 90]. We
consider two features as correlated if they have a Spearman correlation coeicient higher than 0.7 [29, 30,
38, 72, 73]. Overall, we removed a median of 5 features throughout the 100 bootstrap samples. For example,
our correlation analysis shows that each of the following pairs of features are correlated: (“govern”,
“distribut”), (“self”, “class”), and (“licens”, “apach”).

• (Step 7) Redundancy analysis: Correlation analysis does not remove all the collinearity between the features.
Thus, we remove independent features that can be redundant (being predictable by using other independent
features). Thus, we further eliminate the redundant features as they can mislead the interpretation of our
model [30, 42, 76]. The redundancy analysis iteratively trains diferent preliminary models, each of which
predicts one independent feature using the other independent features. Then, it drops an independent
feature �� if it is predictable by the other independent features. In other words, if the preliminary model for
�� has a �

2 higher than 0.9, which is a similar threshold used by prior work [28, 30, 73]. The process stops
once no feature can be predicted by other feature(s). We remove a median of one feature and a maximum
of 3 (e.g., “base”, “delet”, and “note”) for our 100 bootstrap samples.

• (Step 8) Machine learning classiiers: From the previous steps, we obtained a set of inal features that we
use to train a machine learning classiier. In our approach, we leverage and evaluate ive classiiers that
are widely used by prior work [16, 29, 73] including Support Vector Classiier (SVC), Random Forest (RF),
k-nearest neighbor (KNN), Gradient Boosting (GB), and Logistic Regression (LR). We compare between
these diferent algorithms to select the most appropriate one for our classiication problem. For each
classiier, we also leverage the grid searching technique21 to identify the optimal hyperparameters. The grid
search calculates the performance for diferent combinations of hyperparameters values and returns the
best values combination. In Table 4, we provide the parameters values for each classiier.

• (Step 9) Models evaluation: After training a classiier (Step 8), we measure its overall performance on
classifying coniguration from non-coniguration iles via the standard Precision and Recall measures.
Furthermore, we use the performance measurements AUC and Brier Score, described below.

21https://scikit-learn.org/stable/modules/grid_search.html
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Table 4. Classifiers parameters combinations returned by grid search technique.

Classiier Parameters
Support Vector Classiier (SVC) probability=True, C=1000, max_iter=-1, kernel=‘rbf’, gamma=‘scale’,

decision_function_shape=‘ovr’
Random Forest (RF) n_estimators=200, max_depth=20, random_state= 42
k-nearest neighbor (KNN) n_neighbors=10, metric= ‘euclidean’, weights= ‘distance’
Gradient Boosting (GB) n_estimators=200, learning_rate=1.0, max_depth=10, random_state=42
Logistic Regression (LR) random_state=42, C=50, penalty=‘l2’, solver=‘newton-cg’,

max_iter=1000, multi_class= ‘ovr’

ś Area Under the Curve (AUC): It represents the degree to which a model is capable of distinguishing
between the diferent classes [5]. The higher the AUC, the better is the model. An AUC of 0.5 is similar
to a random guess.

ś Brier score: The Brier score [6] assesses the diference between the true classes and their predicted
probabilities (i.e., the probability of each observation to be assigned to one of the two classes according
to our trained model). The Brier score ranges between 0 and 1 and the lower the Brier Score the better
the model is.

By the end of the 100 bootstrap iterations, we obtain 100 AUC and 100 Brier Score performance mea-
surements, which we leverage to statistically compare the ive classiiers (discussed in Step 8) using
the non-parametric Wilcoxon rank-sum test [14] and the Clif delta non-parametric efect test [13]. The
Wilcoxon rank-sum test is used to compare two independent samples and test whether these two samples
derive from the same population by comparing their means. Then, we use the clif delta efect size test to
quantify the diference between two groups of observations. The efect size is considered negligible for d
<0.147, small for d <0.33, medium for d <0.474, and large for d≥0.47.

• (Step 10) Model interpretability: Similarly to previous studies [29, 31, 73, 85], we identify which features
are the most important for classifying a ile to better understand the behavior of our models. We use
permutation analysis in particular as an in-built model technique that is well-used by prior work in
software engineering [29, 31] to provide a global explanation of our models. The feature permutation
consists of randomly shuling the values of a feature and examining the impact of such a shuling on the
model’s prediction. For each model, we end up with a ranking of the most important features. Since, we
leverage 100 models (from the 100 bootstrap samples), we aggregate the 100 obtained rankings using the
Scott-Knott clustering algorithm [26]. To examine which of the important features serve to predict each
class, we create a new test data point with the median values of the features and compute its predicted
probability �1. Then, we modify the median value of one feature �� , at a time, by adding one standard
deviation and compute the new predicted probability �2. Finally, we examine the diference between the
two probabilities �2 and �1. If �2 is superior to �1, the feature is considered exhibiting a positive impact
to predict the positive class (a ile as coniguration) and vice versa. We consider that the �� feature has a
positive contribution to predicting a class if the majority of our 100 models show a positive contribution.
To better understand the performances of our model, we also investigate the iles that are incorrectly
classiied. To do so, we select the iles with the highest Brier score. These are the iles with the largest
diferences between the actual class (coniguration or non-coniguration) and the probability score given
by our models.

Eforts Analysis: We also evaluate how our models perform with diferent amounts of manually labeled

coniguration and non-coniguration iles, as a way to measure the manual eforts required to leverage our models.
Previous studies suggested that the power of a machine learning model could be dependent on the size of the
training sample [18, 35, 43, 44]. Thus, we evaluate what would be the minimal set of iles to manually label to
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obtain a model with a decent performance. To do so, we repeat the same previous steps with diferent data sizes,
starting from 75 iles. Note that these 75 iles contain a set of coniguration and non-coniguration iles. For each
sample size (e.g., 75), we executed 100 bootstrap iterations that select a sample of iles and consider the previous
steps (from Step 1 to Step 9). For example, for a sample size of 75, we select 100 diferent bootstrap samples of
75 iles (coniguration and non-coniguration iles) to train a model. We repeat the same experiment with other
samples sizes.

Results: All of our evaluated models show a good performance and requires a reasonable efort of labeling iles
to reach a decent performance, as discussed in our two indings below.

Finding 1: Our evaluated models show a good performance with a median AUC ranging between

0.85 and 0.91, a median Brier Score that ranges between 0.16 and 0.12, a precision that ranges between

0.78 and 0.86, and a recall ranging between 0.77 and 0.83, as shown in Figure 6. The Random Forest (RF)
model achieved the best performance in identifying coniguration from non-coniguration iles, with a median
AUC of 0.91, a median Brier score of 0.12, a precision of 0.86, and a recall of 0.83. The Gradient Boosting (GB)
model delivered the second-best performance, with a median AUC of 0.90, a median Brier score of 0.15, and a
precision and recall score equals to 0.83 and 0.82, respectively. The models LR, SVC and KNN show a similar
performance with a median AUC between 0.85 and 0.86, a median Brier score of 0.16, and precision and recall
scores between 0.77 and 0.79. We also observe a signiicant diference between RF and the three models (KNN,
LR, and SVC) in the AUC and Brier score with (Wilcoxon test; p-values < 0.05) with large associated efect sizes.
However, the RF model shows a negligible diference in AUC score with the GB model and a large diference in
the Brier score. Even though the models performed diferently in the AUC and Brier scores, they all leveraged
a good coniguration and non-coniguration iles classiication. We further report that the RF model is better
in terms of training and testing time, with less than 40 minutes (on a laptop). In contrast, the GB model that
achieved the second-best performance requires at least 1 hour. As the RF model achieved the best performance,
we evaluate all OpenStack projects source code iles to determine the distribution of coniguration iles. The
outcome of this analysis revealed that the coniguration iles account for 17.26%.
Our permutation importance analysis reveals that the semantics of ive out of the top-10 most important

features are related to coniguration and contribute to the classiication of iles as coniguration iles. The
remaining ive important features are not semantically related to coniguration and contribute to the classiication
of iles as non-coniguration iles. In fact, among these ten most important features, we do not observe any
coniguration-related word that is important to classify a ile as a non-coniguration ile and vice versa. As
shown in Figure 7, the coniguration related words (highlighted in red) that contribute to classifying iles as
coniguration are: “configur”, “conf”, “host”, “install”, and “enabl”. The keyword “configur” (ranked
second) can be present in any coniguration script to denote a coniguration function or even code comments
to describe a coniguration task. The “conf” (ranked 3rd) is an object from the Oslo_config22 framework to
access a coniguration ile. Besides, the feature łhostž (ranked seventh) represents an essential keyword in the
infrastructure-setup coniguration iles to deine the host group name. The host typically deines the environments
(e.g., web or database servers) on which Ansible tasks will take efect. Furthermore, the words łinstallž (ranked
seventh) and łenablž (ranked ninth) could denote any resource-related conigurations. On the other hand, we
observe that the non-coniguration related words (highlighted in green), “arg”, “check”, “instanc”, “copi”

and “auth” serve to predict the non-coniguration class.
Seven of the top-10 misclassiied iles are not coniguration iles, but contain coniguration-related words. For

example, the non-coniguration ile requirements.txt23 contains words related to coniguration such as “config”,
so our model incorrectly classiies that ile as a coniguration while it is a text ile. The same applies to the ile

22https://docs.openstack.org/oslo.conig/queens/reference/cfg.html
23https://github.com/openstack/oslo.tools/blob/master/requirements.txt
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Fig. 6. he obtained model’s performance results in classifying configuration and non-configuration files in terms of AUC,
Brier Score, Precision, and Recall.

rbd.py24 where it incorporates coniguration-related keywords, such as “conf” and “default”. Furthermore, we
notice that our model mistakenly classiies the release-notes25,26 and łrstž iles27 as coniguration iles. These
iles contain words such as “host”, “parameter”, “option” and “enable” that denote a coniguration code.
As another example, the coniguration ile systemd-resolved.conf.j228 do not include any coniguration-related
keyword, so our model incorrectly classiied it as non-coniguration iles. Furthermore, the iles main.yml29 and
os-faults.spec.j230 are misclassiied as they contain non-coniguration related keywords such as, “check” and
“import”.

Finding 2: We observe that we can reach a median AUC of 0.69 by labeling just 100 coniguration

and non-coniguration OpenStack iles. We present in Figure 8 the ive models performances with respect to
diferent sample sizes in terms of AUC, Brier score, Precision, and Recall. We observe in Figures 8a, 8b, 8c, and 8d

24https://github.com/openstack/os-brick/blob/master/os_brick/privileged/rbd.py
25https://github.com/openstack/puppet-nova/blob/master/releasenotes/notes/nova_scheduler_limit_tenants_to_placement_aggregate-

8886c514f0ebbb72.yaml
26https://github.com/openstack/nova/blob/master/releasenotes/notes/microversion-2.43-77d63cae38695fd1.yaml
27https://github.com/openstack/security-doc/blob/master/security-guide/source/compute.rst
28https://github.com/openstack/ansible-role-systemd_networkd/blob/master/templates/systemd-resolved.conf.j2
29https://github.com/openstack/ansible-hardening/blob/master/tasks/rhel7stig/main.yml
30https://github.com/openstack/rpm-packaging/blob/master/openstack/os-faults/os-faults.spec.j2
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Fig. 7. Scot-knot ranking of the top-10 most important features of configuration and non-configuration files identified in
100 bootstraps. The red color indicates features that contribute to the classification of a file as a configuration file, while
the green color is used for features that contribute to the classification of files as non-configuration files. For example, the
łcharmž feature is the most important feature, and it contributes to the prediction of files as configuration files. The higher
the value of the “charm” feature, the higher the probability of a file to be classified as a configuration file. On the other side,
the higher the value of the “def” feature, the lower the probability of a file to be classified as a configuration file.

that the RF model requires minimal efort than the other models to achieve a decent classiication. We only need
to manually label 100 iles to reach a median AUC higher than 0.69, a median Brier score less than 0.23, a median
precision and recall of 0.56 and 0.55, respectively, with the RF model. The KNN and LR models need at least 100
iles to reach a median AUC higher than 0.63 with a median Brier score less than 0.26, and a median precision
and recall higher than 0.53. The SVC model needs 100 iles to reach a median AUC higher than 0.63 and a median
Brier score of 0.26, and a median precision and recall higher than 0.52. We also notice that the GB model needs a
set of 100 manually labeled iles to reach a median AUC higher than 0.65 with a median Brier score of 0.37, with
a median precision and recall higher than 0.53. Overall, the RF model requires less manual labeling efort of 100
iles to achieve a decent classiication with a median AUC higher than 0.69. We conclude that the RF model is
not just the fastest model to train/test according to inding 1, but it is also the model that requires less efort to
achieve a decent classiication performance of coniguration and non-coniguration iles according to inding 2.
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Fig. 8. Comparison of sample sizes impact on the performance of the five classifiers (RF, SVC, LR, KNN, and GB) in terms of
AUC, Brier score, Precision, and Recall.
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Summary for RQ2: Our RF classiication model that is trained on TF-IDF dataset shows a good classii-
cation performance of the OpenStack coniguration and non-coniguration iles, with a median AUC of
0.91, a median Brier score of 0.12, and median precision and recall of 0.86 and 0.83, respectively. Our RF
model can reach a median AUC of 0.69 using just 100 manually labeled OpenStack iles.

RQ3: How accurately can we classify the diferent types of configuration files?

Motivation: While a previous study [21] found that one of the most common IaC issues is that dealing with
the diferent formats of IaC tools is often obscure to most and requires specialized personnel, we believe that
the problem can be more challenging when considering the whole coniguration system, not just IaC, of a
software application. Therefore, to help developers identify diferent types of coniguration iles and toward
a irst step for further studying diferent formats of conigurations (not just IaC conigurations), we develop a
machine learning model that identiies these iles automatically to help developers identify them from a plethora
of coniguration iles that a system can have. Identifying diferent types of coniguration iles can also assist
researchers in conducting more focused studies on speciic ile types that may be more challenging to identify,
understand, or maintain than those previously studied. This research question aims to evaluate how diferent
machine learning techniques leverage the textual content of a coniguration ile to classify it based on the nine
types identiied in RQ1. Similarly to RQ1, we also evaluate the trade-of between performance of our classiication
models and the amount of eforts required on classifying coniguration iles to train a model.

Approach: We formulate our problem as a multi-class classiication task to automatically categorize the various
coniguration ile formats. The purpose is to categorize a given ile into a speciic coniguration type based on its
content. Each ile is classiied into exactly one type. Classifying iles is considered supervised learning, as we will
use machine learning techniques to classify iles based on the labeled coniguration iles in RQ1. We apply the
same classiication approach adopted in RQ2, with the following two adjustments regarding data balancing and
support of multi-class classiication.

• Data balancing: To address the uneven distribution of our ile types in the corpus, we employ the SMOTE
oversampling approach [9]. SMOTE will balance the distribution of classes by producing new instances for
minority types. We only balance our train set in this step.

• Support of multi-class classiication: Similarly to RQ2, we compare the performance of the various classiiers
including RF, KNN, GB, LR, and SVC. However, as LR and SVC do not natively support multi-classiication
problems, we employ the One-vs-Rest (ovr) ensemble technique, which entails dividing a multi-class dataset
into multiple binary classiication problems [20, 61]. We then evaluate their performance using the weighted
Precision, weighted Recall, AUC, and Brier score measurements. We further report theWeighted Area Under
the Curve (weighted AUC) [40], which weights the score by computing the number of valid instances for
each class.

To get a more qualitative sense of the built models, we further investigate the ranking of the most important
features the model relies on to classify the diferent types of coniguration iles. We then investigate the possible
reasons behind the model’s misclassiied instances by manually examining ten iles with the highest Brier scores.

We inally assess the minimal required efort, in terms of the number of labelled coniguration iles, to achieve
a decent classiication of each model. In this case, we assume that developers/researchers already identiied what
iles are for coniguration and wish to classify these coniguration iles under one of the nine diferent categories.
To do so, We select diferent samples of coniguration iles starting from 75 coniguration iles and measure our
models’ performances. To make our analysis statistically sound, we select 100 diferent samples of the same
sample size (e.g., 75) of coniguration iles and evaluate the performance of our models.

ACM Trans. Softw. Eng. Methodol.



24 • Bessghaier et al.

Results: The ive classiiers achieved a good performance in identifying the diferent coniguration types in
terms of weighted AUC, standard AUC, and Brier score as shown in Figure 9. Similarly to RQ1, our models do
not require manually labeling many iles.

Finding 1: The multi-class classiication models achieve a good classiication performance with

a median weighted AUC ranging from 0.86 to 0.92, a median Brier Score ranging from 0.04 to 0.09,

a median weighted precision ranging between 0.76 and 0.84, and a median weighted recall ranging

between 0.74 and 0.82 for all the coniguration types.Mainly, we observe that the Random Forest (RF) model
delivers the best performance with a median weighted AUC of 0.92 and a median, a median Brier score of 0.04,
a median weighted precision of 0.84, and a median weighted recall of 0.82, followed by the SVC model with a
median weighted AUC of 0.88, a median Brier score of 0.06, a median weighted precision of 0.83, and a median
weighted recall of 0.81. Furthermore, we observe similar good results with the GB and LR models achieving
a median weighted AUC of 0.87, a median Brier score of 0.07 and 0.08, respectively, and a median weighted
precision of 0.77 and 0.76 with a median weighted recall of 0.74 and 0.74, respectively. The KNN model achieves a
median weighted AUC of 0.86, a median Brier score of 0.07, a median weighted precision of 0.76, and a median
weighted recall of 0.74. Furthermore, we ind a statistically signiicant diference (Wilcoxon test; p-value < 0.05)
between the RF and the rest of the models in the standard AUC, weighted AUC, and Brier scores with a small
to medium efect sizes. We also observe that the RF model is the best in the training and testing time, taking
approximately 35 minutes (on a laptop). Therefore, we advocate to experiment with the RF algorithm on such a
multi-class classiication problem.

Given that the RF model outperformed the other classiiers, we use it to identify the types of all coniguration
iles within OpenStack projects that were identiied by our binary model. As a result, we found the following distri-
butions of the nine coniguration types, as shown in Figure 10. As we can clearly observe, the infrastructure-Setup,
infrastructure-Variables, and infrastructure-Templates coniguration types are the most prevalent, accounting for
over 80% of the entire coniguration system.

We ind that the top-10 features serve to predict six coniguration ile types łexternal, declaration, infrastructure-
setup, environment-access, resource_operationsž, and łreaderž. We observe from Figure 11 that the irst ranked
feature “default” (highlighted in orange) serves to predict the external coniguration ile; i.e., the higher the value
of “default”, the higher the probability of a coniguration ile to be for the external type. The keyword “default”
denotes the group name of the default coniguration options in the external coniguration iles, following the
syntax “[Default]”. Besides, we ind that the keywords “opt” and “list” (highlighted in green) predict the
declaration coniguration ile. For example, the feature “opt” (ranked 8th) is a keyword representing the class used
to deine the coniguration options31. Furthermore, we ind three features serving to predict the infrastructure-
setup ile, including “ansibl”, “host” and “kolla” (highlighted in blue). For instance, the keyword “ansible”
could be deined in the Ansible IaC tool playbook name32 of the Ansible IaC tool in the infrastructure-setup.
The feature “host” (ranked 9th) represents an essential keyword in the infrastructure-setup coniguration iles
to deine the host group name. The host typically deines the environments (e.g., web or database servers) on
which Ansible tasks will take efect. The features “openstack” and “type” (highlighted in pink) contribute to
the prediction of the environment-access type, whereas “package” (highlighted in yellow) serves to predict the
resource_operations type. Finally, the feature “conf” (highlighted in red) contributes to the prediction of the
reader coniguration type. The feature “conf” (ranked fourth) is an object from the Oslo_config module to
access the external iles from a reader coniguration ile. These features only represent the top-10 features with
the highest impact on the model’s performance,i.e., other relevant features could contribute to the prediction of

31https://docs.openstack.org/oslo.conig/queens/reference/opts.html#oslo_conig.cfg.Opt
32Playbooks are the Ansible IaC tasks responsible for executing Ansible’s coniguration and deployment functions:

https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
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Fig. 9. The five classifiers performance in predicting configuration file types in terms of weighted AUC, standard AUC, Brier
score, weighted Precision, and weighted Recall.

the remaining coniguration types: infrastructure_variables, infrastructure-template and infrastructure-creation.
Overall, our analysis reveals that the ten most important features to predict the types of coniguration iles are
indeed words that are relevant to their respective type of coniguration iles.
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Fig. 10. The distribution of the identified nine configuration file types in OpenStack projects.
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Fig. 11. Scot-knot ranking of the top-10 most important features of configuration file types identified in 100 bootstraps.
The orange color is used for features contributing to the prediction of the external configuration type. The green is for
features that serve to predict the configuration declaration type. The blue color represents the features that contribute
to the prediction of the infrastructure-setup type. The pink color is for features contributing to the environment_access
configuration type. The yellow color represents the features predicting the resource_operations configuration files, while the
red is for features contributing to the prediction of the reader configuration files.

We ind in the top-10 misclassiied iles three infrastructure-setup iles, two declaration iles, two external iles,
one infrastructure-templates ile, one infrastructure-variables ile, and one resource-operations ile. Taking the
examples of the infrastructure-setup ile enroll-dynamic.yaml33, the infrastructure-templates pycadf.spec.j234,
the infrastructure-variables ssh.yaml35, and the external glance-scrubber.conf 36 ile, we observe that they do not
incorporate any feature related to their type, which could lead the model to misclassify the iles. Furthermore,
some coniguration ile types could include keywords that frequently appear in another coniguration ile type. For

33https://github.com/openstack/bifrost/blob/master/playbooks/enroll-dynamic.yaml
34https://github.com/openstack/rpm-packaging/blob/master/openstack/pycadf/pycadf.spec.j2
35https://github.com/openstack/charm-openstack-dashboard/blob/master/charmhelpers/contrib/hardening/defaults/ssh.yaml
36https://github.com/openstack/glance/blob/master/etc/oslo-conig-generator/glance-scrubber.conf
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instance, the template ile pycadf.spec.j237 includes the feature “group”, which is usually found in the declaration
coniguration type.

Finding 2: Our model can reach a median weighted AUC greater than 0.75 with only 100 OpenStack

coniguration iles. Figure 12 shows a comparison between the ive classiiers in terms of the weighted AUC,
standard AUC, Brier score, weighted Precision, and weighted Recall for diferent sample sizes. We observe in
Figures 12a and 12b that each classiier relatively shows similar performance results in the weighted and standard
AUC metrics. We observe that the RF model needs less efort of manually labeling iles to achieve a decent
performance compared to the other models. Speciically, the RF model only needs 100 iles to achieve a median
weighted AUC greater than 0.75 with a median Brier score of less than 0.1, a weighted precision of 0.57, and
a weighted recall of 0.54. The SVC model needs 200 iles to achieve a weighted AUC higher than 0.70 with a
median Brier score less than 0.1, and a median of weighted precision and weighted recall more than 0.55 and 0.53,
respectively. We also observe that the LR, KNN models need at least 200 iles to achieve a median weighted AUC
higher than 0.70, a median Brier score less than 0.1, and a weighted precision higher than 0.56 and a weighted
recall higher than 0.53, respectively. The GB model needs at least 1000 iles for an AUC higher than 0.70. Overall,
the RF model can deliver decent classiication performance of the nine coniguration ile types with minimal
efort of only 100 manually labeled iles. Finally, we report that the RF model is the fastest in training and testing
time, in addition to that, it requires the least number of manually labeled iles to achieve a decent classiication
performance of the diferent coniguration ile types.

While we admit that one might not end up selecting all the nine types in their random sample of coniguration
iles, the chance of missing at least one type is 0.35, 0.32, 0.28 0.27, 0.21, 0.23, 0.19, 0.16, 0.17, 0.13, 0.09, and 0.07 for
a sample size of 75, 100, 200, 300, 400, 600, 800, 1000, 1200, 1400, 1600, and 1756 coniguration iles respectively.
To identify these last probabilities, we selected 100 diferent samples of 75 (as an example) coniguration iles and
identiied how many coniguration types were obtained in that sample. We observe that 65 out of the 100 samples
have all the nine types of coniguration iles, 6 out of the 100 are missing one ile. That said, 71% of the samples
have at least 7 types of coniguration iles. Similarly, the larger the sample size, the more likely a selected sample
will cover all the types of coniguration iles.

Summary for RQ3: Our RF model can classify an OpenStack coniguration ile into one of the nine
types of coniguration iles with a median weighted AUC of 0.92, a median Brier score of 0.04, a median
weighted precision of 0.84, and a median weighted recall of 0.82 using the RF algorithm. Our model can
also reach a median weighted AUC higher than 0.75 with 100 manually labeled OpenStack’ coniguration
iles.

Discussion: By looking at the documentation of OpenStack, we did not ind 5 types of coniguration iles. Among
these types, some iles are not easily distinguishable from ordinary source code iles, such as python and bash
iles. Therefore, our models can be used by researchers and developers for better maintenance of coniguration
iles. (1) Identifying iles that are for coniguration will help propose better approaches to maintain them. For
instance, researchers can use our model to identify all the coniguration iles instead of single iles (Dockerile,
IaC iles) so they can generalize their results to the whole coniguration of a system rather than a few iles. For
example, Jiang and Adams [27] found that infrastructure as code iles co-evolve with code and test iles to help
managers better estimate the cost of maintaining coniguration iles. However, such a cost can be signiicantly
under-estimated, as that prior work focused just on a subset of the whole coniguration iles. Thus, future studies
can better help developers to better maintain their systems. (2) According to a discussion with an OpenStack

37https://github.com/openstack/rpm-packaging/blob/master/openstack/pycadf/pycadf.spec.j2
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Fig. 12. Comparison of sample sizes impact on the performance of the five classifiers (RF, SVC, LR, KNN, and GB) in terms
of weighted AUC, AUC, Brier score, weighted Precision, and weighted Recall.
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developer, we observed that no standards exist for coniguration iles, so developers can leverage our model to
identify which coniguration iles exist. We also observe that developers consider just iles that have the ł.confž
extension as coniguration iles, while our study shows the existence of other iles for coniguration with diferent
ile extensions, including code extensions. In fact, there are iles that are written in python and bash scripts that
can be for diferent types of conigurations, for which we built two machine learning classiiers to identify them.
Our model can be also used by novices to quickly distinguish between coniguration and non-coniguration iles
and understand a software system.

We believe that a model with an acceptable performance is better than randomly guessing which iles are for
coniguration, which can be a tedious task. For instance, our binary model (M1) reaches an acceptable AUC of 0.69
with only 100 iles. However, still, the model performs better with more iles (e.g., an AUC of 0.82 for 200 iles).
That said, developers do not need to deal with all the iles in a project to classify them before using our model,
developers can instead train a irst model M1 with an acceptable AUC, then use that model to identify additional
coniguration and non-coniguration iles that are the TP and FP iles of M1. Using a irst model is more likely to
identify coniguration iles than not using anything and randomly guessing which iles are for coniguration.
Such a manual and random labeling is equivalent to an AUC of 0.50, while our model trained on just 100 iles can
have an AUC of 0.69 and of course, the more iles used to train a model, the better the performance is. In the
following, we provide use case scenarios of our models for both developers and researchers.

Models use case scenarios: Models use case scenarios: The identiication and classiication of coniguration
iles, particularly in large systems, can provide an initial starting point for both developers and researchers
to gain a better understanding of the coniguration system. On one hand, using our classiication models will
help developers identify the diferent types of coniguration iles of OpenStack. Eventually, developers can use
their understanding of the various types of iles as a foundation to understand their roles, and knowing which
types of iles need to change for a coniguration-related modiication. For instance, if a developer decides to
remove a coniguration option of a service from the łExternalž coniguration ile, but forgets to remove the
option’s reference from the łDeclarationž ile, the service would still attempt to use the removed option from the
declaration ile upon startup, and eventually may fail to restart or behave unexpectedly. Furthermore, knowing
the types of coniguration iles will provide a better understanding of the high level picture of coniguration
iles. For instance, the łInfrastructure-Templatesž are often used to generate the łExternalž coniguration iles (cf.
RQ1 section). Therefore, in case a developer decides to manually modify the auto-generated external ile, the
changes would be lost once the external ile is decided to be removed or re-auto generated. For example, the
external łnova.confž ile38 is auto-generated from Puppet. While it is possible to manually modify it, it is not
recommended to do so, as indicated in a comment of the same ile: ł# HEADER: This ile was autogenerated at Thu
Oct 04 14:53:15 -0400 2012 by puppet. While it can still be managed manually, it is deinitely not recommended.ž
On the other hand, using our models will help researchers analyze a coniguration system from diferent

perspectives. For example, researchers can (1) focus on certain types of coniguration iles that are most important
to their research, (2) identify the interactions between coniguration iles to examine dependencies over diferent
coniguration, (3) provide further tools to suggest which coniguration iles need to co-change, and (4) better
quantify the impact of coniguration changes by considering all diferent types of coniguration iles in a system,
etc. For example, the work of Jiang and Adams [27] only focuses on the evolution and maintenance of a single
type of coniguration iles (iles with ł.ppž extension), which might underestimate the efort of maintaining the
coniguration system (i.e., set of iles that are used for the deployment and runtime coniguration). Therefore, we
encourage future works to use our classiication model to determine diferent coniguration types and consider
all the types of coniguration iles, so managers can better plan their coniguration-related changes.

38https://github.com/openstack/osops/blob/master/example-conigs/MIT_CSAIL/controller/etc/nova/nova.conf
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5 THREATS TO VALIDITY

In this section, we discuss the threats that might afect the validity of our results.
Construct threats to validity: Our irst threat to validity concerns the selection of our manually studied

coniguration iles. Since our qualitatively studied coniguration iles were selected by randomly sampling a set
of iles, our results might miss on some important types of coniguration iles. To mitigate this threat, we collect
data using diferent sources, i.e., the documentation of OpenStack, the documentation of the IaC tools used by
OpenStack, and prior coniguration related changes. In addition, we collected statistically representative samples
for each of our three sources to end up with a large number (over 1,700) of coniguration iles. That said, our main
take-home message will not change with more types of iles. In fact, we conclude that a software coniguration
can have multiple types of iles rather than just one ile, so even covering more types of coniguration iles will
not change our main take-home message.
Internal threats to validity: Our internal threat to validity consists of the impact of our selected training

datasets on the performances of our two models. Our irst classiication model is trained on our manually
labeled iles and other randomly selected non-coniguration iles. Leveraging other coniguration iles or non-
coniguration iles would lead to a diferent performance. To mitigate this risk, we extensively evaluated our
models using 100 diferent bootstrap samples to make our conclusion statistically robust. Similarly, our second
model leverages our manually classiied coniguration iles, so adding new coniguration iles to our training
dataset might change the results. Similarly to our irst model, we mitigate this risk by leveraging 100 diferent
bootstrap samples to make sure that our models’ performances are consistent, and our good performances are
not obtained just by chance.
Furthermore, an internal threat to validity is related to the process for selecting non-coniguration iles to

train our classiication model of RQ2. While our experiment uses the 1,756 iles of RQ1 as coniguration iles, we
followed a semi-automated approach to identify a corpus of non-coniguration iles. These non-coniguration
iles can accidentally have coniguration iles, which can bias the trained classiication model of RQ2. To mitigate
this risk, we irst eliminate all the iles that were identiied in our data selection process of coniguration iles
(RQ1) and not just the 1,756 iles that we manually classiied. We then deined a set of keywords that should not
appear in the path of a non-coniguration ile. The irst and second authors iteratively reined these keywords
using three iterations and 100 diferent randomly selected iles (a total of 300 iles). In addition, we eliminate any
ile that at least one rater (the irst or second author) classiied as a coniguration ile.
Another internal threat to validity is related to the distribution of coniguration and non-coniguration iles.

Since we do not know in advance what is the distribution of the two types of iles in OpenStack, we evaluated
our model using an equal distribution of iles. However, such a decision can bias our model. To mitigate this risk,
we evaluated whether the performance of our model for classifying coniguration from non-coniguration iles
is consistently performing on diferent sampling sizes (ranging from 50%/50% to 95%/5% with a 5% increment
on the non-coniguration iles category). With that, we do not observe any signiicant diferences between the
models trained and tested under diferent sample distributions.
Furthermore, our efort analysis for the model that classiies coniguration iles under diferent types shows

that one can obtain a high performance from a small sample of coniguration iles. An internal threat to validity
concerns the number of coniguration types that are obtained in that small sample. One might not end up selecting
all the iles, so our model will not be able to classify coniguration iles under these missed types. To mitigate
this risk, we identiied what are the chances to miss one or multiple coniguration iles when selecting a small
sample of iles. We observe that such a probability is low and the larger the sample is, the lower the probability
of missing coniguration types. We also encourage future studies to improve our model to better identify the
diferent types of coniguration iles.
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External threats to validity: A large body of prior work [27, 45, 80, 89] that focused just on OpenStack
and our paper share the same threat of generalizing our results to other software systems. For instance, certain
iles that we identiied can be unique to OpenStack, while other iles that exist in other systems might not be
identiied through our study. That is, OpenStack uses several IaC tools that are popular, so some identiied types
of coniguration iles can still exist in other systems. Our conclusion is that it is worth exploring what iles are
used for coniguration in a system ahead of improving coniguration for that system, as diferent iles can exist.
We also advocate that machine learning classiiers can help in identifying coniguration from non-coniguration
iles and diferent types of coniguration iles. As we focus just on OpenStack coniguration iles, OpenStack is
still a highly conigurable software system and has many projects that were extensively studied in the literature.
In addition, our study considers many qualitatively analyzed iles. Similarly, our models are not generalizable for
other software systems in other domains (e.g., robotics, ML pipelines, operating systems, etc.). For example, ML
pipelines have conigurations for training, tuning and testing models [3], an operating system can have certain
iles/tools to deine the constraints between diferent coniguration options, other iles for enabling/disabling
certain drivers. While our results do not generalize to these iles, our take-home message can be valid for these
systems that can also have multiple iles for coniguration. Thus, we encourage future studies to replicate our
work on these systems. That said, our results show that such a number of iles can be as low as 100 iles to reach
a decent median AUC (i.e., 0.69) for OpenStack. Although we do not generalize that using a speciic sample of
size will lead to the same performances that we obtained, we observe promising results when using a small
subset of coniguration iles to train a machine-learning model. That can motivate future studies to replicate our
experiment on other software systems. We also advocate practitioners and researchers irst to evaluate a model
with small sample size and incrementally increase that size to reach a good model’s performance.

6 RELATED WORK

Most of the literature on software coniguration focuses on empirically studying software coniguration [24, 33,
62, 88] and debugging coniguration errors [2, 64, 83, 84], while the closest work to our paper is related to the
maintenance of software coniguration [12, 15, 27, 37, 59, 65ś67, 69, 70].

6.1 Empirical Studies on Sotware Configuration

A large body of research (e.g., [24, 33, 62, 88]) investigated the complexity that coniguration adds to the usability
and maintenance of software systems. For example, Xu et al. [88] indicated that the increased complexity of
software coniguration can be simpliied by removing unused coniguration options and simplifying complex
ones. Sayagh and Adams [62] empirically examined how the coniguration options of diferent WordPress and its
plugins are interrelated. Behrang et al. [4] presented the SCIC static analysis technique that can automatically
detect software coniguration inconsistencies in systems that are written in multiple programming languages
and have complex coniguration options structures. Chen et al. [10] studied software coniguration dependencies
in 16 widely-used cloud and datacenter systems to deine and identify common code patterns for ive types of
coniguration dependencies. The study shows that coniguration dependencies are more prevalent and diverse
and should be considered a irst-class issue in software coniguration engineering. Ramachandran et al. [60]
introduced techniques that do not require a system administrator to have in-depth knowledge about a multi-tiered
system in order to be aware of the possible coniguration dependencies in a system. Hubaux et al. [24] conducted
two surveys among Linux and sCos users to understand the coniguration challenges. Jin et al. [33] analyzed a
highly-conigurable industrial application and two open source applications to quantify the true challenges that
conigurability creates for software testing and debugging. Guerriero et al. [21] shed light on the current state
of practice in the adoption of IaC and the key software engineering challenges in the ield. The paper aims to
investigate how practitioners adopt and develop IaC, and what are the practitioner’s needs when dealing with
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IaC development, maintenance, and evolution. The study conducted 44 semi-structured interviews with senior
developers from diferent companies. The indings of the study suggest that there is a need for more research in
the ield of IaC. The currently available IaC tools have limited support, and developers feel the need for novel
techniques for testing and maintaining IaC code. The study highlights the challenges faced by practitioners in
adopting and developing IaC, including the need for better support for testing and maintenance of IaC code.
However, none of these studies investigated what constitute a coniguration system, neither the challenges faced
on diferent types of coniguration iles.

6.2 Debugging Configuration Errors

A large body of research (e.g., [2, 64, 83, 84]) leveraged source code analysis techniques to help practitioners
identify misconigured options. Sayagh et al. [64] leveraged a modular source code analysis approach to identify
misconigured coniguration options in the LAMP (Linux, Apache, MySQL, and Php) stack. Attariyan and Flinn [2]
built an approach called ConfAid, which inds the root cause of coniguration errors. Wang et al. [83] and Wang
et al. [84] detected potential coniguration errors in a machine exhibiting erroneous behavior by comparing
its state to other machines. While these papers focus on software coniguration, none of them studied what
constitute a coniguration system or the impact of each coniguration type on the quality of a software system.

6.3 The Maintenance of Sotware Configuration

A large body of research undertaken the maintenance of software coniguration [12, 15, 27, 37, 59, 65ś67, 69,
70]. Shambaugh et al. [69] developed an approach called Rehearsal to check the non-deterministic Puppet IaC
iles and ensure the correct execution of scripts in diferent environments. Other researchers proposed code
smells detectors for Puppet [59, 70], Chef [67], and Ansible [15] infrastructure-as-code coniguration iles. For
instance, Sharma et al. [70] proposed a catalog of 13 implementations and 11 design coniguration smells applied
to Puppet IaC iles. Rahman et al. [59] leveraged a tool that detects seven security-related code smells of Puppet.
Similarly, Schwarz et al. [67] investigated code smells for Chef code by identifying possible violations of Chef
design guidelines. In the same line, Furthermore, Vassallo et al. [82] provided a semantic linter łCD-LINTERž for
the identiication of smells in Continuous Delivery (CD) pipelines coniguration iles in 5,312 open-source projects
on GitLab. Furthermore, Sayagh et al. [65] identiied a catalog gathering nine major coniguration activities, 22
coniguration-related challenges, and 24 best practices to improve software coniguration quality. Sayagh et al.
[66] proposed the Conig2Code framework for developers to better manage their coniguration options and cope
with software coniguration challenges, including coniguration maintenance. Kumara et al. [37] performed a
large-scale observational analysis to gather good and poor IaC development practices for three IaC languages,
namely Ansible, Puppet, and Chef. The authors provided a taxonomy consisting of ten good IaC practices and
four bad practices. Jiang and Adams [27] conducted an empirical study on 265 OpenStack projects to investigate
the co-evolution of IaC iles (Puppet) and other iles (production, test, and build iles). They found that IaC iles
evolve as frequently as production and test iles and require as much maintenance. Similarly, Cito et al. [12]
examined the maintenance and evolution of Dockeriles on a data set of over 70k instances. They found that
Dockeriles belonging to popular software projects are revised, with yearly averages ranging from ive to 12
revisions. Furthermore, Ibrahim et al. [25] investigated the evolution of Docker Compose iles based on their
change history. They found that the Docker Compose iles infrequently change, with a median number of only
three commits. In the same line, Vassallo et al. [82] developed a semantic linter called łCD-LINTERž to detect 4
types of smells in coniguration iles of Continuous Delivery (CD) pipelines across 5,312 open-source projects
on GitLab. The linter achieved a precision and recall of over 87%, indicating its efectiveness. The research also
revealed that these identiied issues are signiicant in real-world scenarios and occur frequently.
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While we do not carry out a study on the maintenance of coniguration iles, our results encourage future
studies to investigate the maintenance of the whole coniguration system rather than just certain coniguration
iles. For example, we encourage future studies to investigate code smells on diferent coniguration iles rather
than just Puppet, Chef, and Ansible iles.

7 CONCLUSION

While several studies investigated the maintenance of software coniguration, they focused on a limited subset of
the coniguration system. To cope with such a limitation, we investigate what types can constitute a coniguration
system and whether we can leverage machine learning techniques to identify a coniguration system and its
diferent type of iles. We qualitatively studied 1,756 coniguration iles to better understand what types of
coniguration iles can constitute a coniguration system. As a result, we report nine diferent coniguration types
used at the OpenStack deployment and run-time stages. These iles are interconnected, as we observe that some
coniguration iles used during deployment can generate other coniguration iles used in the run-time stage.
Furthermore, these coniguration iles do not all use the same format or have the same ile extension(s). We ind
that seven ile extensions are used for coniguration and non-coniguration iles, making identifying the diferent
coniguration ile types a not straightforward task.

To help practitioners and researchers identify the diferent types of iles, we propose in this paper two machine
learning classiication models. The irst model identiies coniguration from non-coniguration iles, and the
second model classify a given coniguration ile under its appropriate type of coniguration iles. Both of our
models leverage the textual content of iles using the TF-IDF algorithm. Our irst model is able to identify
coniguration from non-coniguration iles, with a median AUC of 0.91, a median Brier score of 0.12, and a
median precision of 0.86, and recall of 0.83. We also ind that our models can reach a median AUC of 0.69 from
only 100 iles to manually label. Our second model to classify the diferent types of coniguration iles shows
a median weighted AUC of 0.92, a median Brier score of 0.04, and a median weighted precision or 0.84, and a
median weighted recall of 0.82. Our second model only requires a set of 100 OpenStack coniguration iles to
reach a weighted AUC higher than 0.75. Our results conclude that a software system can have multiple types of
coniguration iles, whereas one can train a model with a minimal set of iles to identify coniguration iles and
classify them under diferent types. While we found promising results on OpenStack, we encourage future work
to replicate our study on other projects.
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