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On the Detection of Structural Aesthetic Defects of Android
Mobile User Interfaces with a Metrics-based Tool

NARJES BESSGHAIER∗, ENSI Manouba, Tunisia
MAKRAM SOUI, College of Computing and Informatics Saudi Electronic University, Saudi Arabia
CHRISTOPHE KOLSKI, Université Polytechnique Hauts-de-France, France
MABROUKA CHOUCHANE, ENSI Manouba, Tunisia

Smartphone users are striving for easy-to-learn and use mobile apps user interfaces. Accomplishing these
qualities demands an iterative evaluation of the Mobile User Interface (MUI). Several studies stress the value of
providing a MUI with a pleasing look and feel to engaging end-users. The MUI, therefore, needs to be free from
all kinds of structural aesthetic defects. Such defects are indicators of poor design decisions interfering with
the consistency of a MUI and making it more difficult to use. To this end, we are proposing a tool (ADDET)
to determine the structural aesthetic dimension of MUIs. Automating this process is useful to designers in
evaluating the quality of their designs. Our approach is composed of two modules. 1)Metrics assessment: is
based on the static analysis of a tree-structured layout of the MUI. We used 15 geometric metrics (also known
as structural or aesthetic metrics) to check various structural properties before a defect is triggered; 2)Defects
detection: the manual combination of metrics and defects are time-consuming and user-dependent when
determining a detection rule. Thus, we perceive the process of identification of defects as an optimization
problem. We aim to automatically combine the metrics related to a particular defect and optimize the accuracy
of the rules created by assigning a weight, representing the metric importance in detecting a defect. We
conducted a quantitative and qualitative analysis to evaluate the accuracy of the proposed tool in computing
metrics and detecting defects. The findings affirm the tool’s reliability when assessing a MUI’s structural
design problems with 71% accuracy.

CCS Concepts: • Human-centered computing → Human computer interaction (HCI); HCI design
and evaluation methods; Graphical user interfaces; HCI theory, concepts and models.

Additional Key Words and Phrases: Structural aesthetic defects, Automated evaluation, Android MUI, Opti-
mization algorithm, NSGA-II
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1 INTRODUCTION
Nowadays, smartphones are an important part of human life. Such smart devices give their users
considerable advantages in terms of usability, ubiquity and ease of use [32]. This trend has soared
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rapidly, and apps have become more sophisticated, providing consumers with many feature sets
(high display resolution, 3G/4G network access, simulation of 3D games, and multimedia). As
mobile apps become more accessible, versatile, and user-friendly, users tend to use mobile phones
over software applications [39]. Users of smartphones communicate with an application through
its user interface (UI), which is a touch-sensitive display that recognizes the events of the user
and delivers the results via graphical components. Improving the usability of the MUI, therefore,
requires the identification of the structural design defects. Mahajan et al. exposed that inconsistent
GUIs (Graphical User Interface) could increase the completion of the task time between 10% and
25% [26]. Similarly, 65% of GUI defects resulted in a loss of some features, while 60% of code errors
were at the GUI level [42]. Within this way, several studies have shown that usability is an essential
measure of the quality and sustainability of mobile apps [6].
Aesthetics refers to the perceived aesthetic level of the MUI, and how it draws the interest of

users. Aesthetics includes the structural (a layout-related property dealing with graphical elements
geometric positioning) and the colorful aspect (the choice of harmonically appropriate colors). In
computer science, we find aesthetics to be the level of the visual appeal of a design. It is a Usability
sub-characteristic with a slight line of differentiation. On the one side, the perceived usability
appears to generate an usable and informative MUI (i.e, given functionalities are informative and
not misleading; data must be transparent and descriptive, etc). Through focusing on the structural
placement and colorfulness of the MUI elements, aesthetics, on the other hand, focuses on user
attraction. Aesthetics evaluation approaches are divided into two categories: 1)Qualitative/Subjective
evaluation: the emphasis is on evaluating whether the concept can follow a set of visual guidelines
[26, 30, 31]. Such assessment is achieved by getting experts or end-users present. 2) Quantita-
tive/Objective assessment: it is based on the use of metrics to evaluate the characteristics of a design
feature, such as cohesion, density and balance. Strict metric assessment involves how good or bad
a specific structural property is.
Scholars have proved that aesthetics quality has an impact on the engagement level [4, 37, 38,

50, 53], the perceived usability [23, 46, 50, 51], and users loyalty [27, 46, 50]. Trkyilmaz et al. [52],
highlighted that end-users rank the design aesthetics as necessary as the operational side of an
application. Despite the importance the aesthetics plays in attracting end consumers, most of the
current studies have proposed subjective [5, 13, 19, 49] and objective [33, 47, 53, 57] evaluation
approaches and the identification of defects were fortunate.

We suggest an automated tool for evaluating the structural dimension of MUIs to cope with the
limitations as described above. Our approach uses an optimization algorithm (NSGA-II) to generate
defects detection rules to ensure a non-extensive knowledge of the rules specification. In addition,
we automatically adjust the thresholds for metrics, as they are the essential and delicate factors in
detecting a structural defect. A quantitative and qualitative analysis has proven the efficacy of the
method in identifying defects in the visual quality.

The remainder of this paper is structured as follows. Section 2 provides the related work. Section
3 introduces and defines the set of selected metrics and defects. Section 4 presents the modules
of our proposed tool ADDET, while section 5 validates the findings. In section 6, we discuss the
results, while we present the threats to validity in section 7 and we conclude with some future
research directions in section 8.

2 RELATEDWORK
We present some of the studies targeting the analysis of the MUI quality. We focus on automated as-
sessment and the application of predictive metrics. The techniques are classified into two categories:
qualitative methods and quantitative methods.

ACM Trans. Interact. Intell. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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2.1 Qualitative evaluation methods
There is a wide variety of attempts in the literature to determine the consistency of MUIs. Providing
high-quality software is a significant move. It allows end-users with less effort to communicate
with the app on various platforms. [7, 24, 25]. Scholars suggested the iterative approach to ensure
that the end-users are involved in the program’s life cycle. It is a cyclic prototyping process based
on feedback from the user [11, 48]. A broad variety of usability evaluation tools and techniques
such as laboratory testing, questionnaires, and inspection methods have been proposed [5, 19, 43].
Mainly, the inspection methods and questionnaires are addressed to desktop GUIs, which have
different requirements for User eXperience (UX) than smartphones. Usability experts have sought
to adapt those standards to the mobile world for this reason. Yanez re-adopted a desktop-centric
checklist for the mobile interface to identify unique MUI problems and established independent OS
guidelines [55]. Kuparinen et al. presented a comparison of generic heuristics and domain-specific
heuristics for applications with maps [21]. The findings highlighted that the proposed domain-
specific checklist aided users to find more usability issues. These studies developed heuristics
manually to assess the MUI. The heuristics evaluation is one of the most widely used methods of
evaluating mobile apps’ usability in an early design phase. It tests a MUI by a set of rules [35]. This
method is productive, but at the same time, error-prone, and subjective.
Other scholars have relied on predicting the user’s aesthetics judgment through the crowd.

Reinecke et al. have explored the impact of the first impression of visual complexity and colorfulness
on the aesthetics of widescreens [40]. The experiment was performed across 450 websites. After
500ms, participants were asked to determine the complexity and appearance of the webpages. The
results demonstrated how a strong negative association is found between the visual complexity and
the aesthetic based on the judgment of users. As the complexity increases, the appeal diminishes.
The colorfulness, on the contrary, did not show any significant impact on the first users perception
of appeal. These results show that visual complexity is, at first sight, the dominant feature. A similar
study was proposed by the [28] on 51 mobile user interfaces. Early work consisted of determining
how complexity and aesthetics could be influenced by a particular exposure period by the users.
For both of the quality dimensions, a small difference in means was noticed. This result may call
for an empirical study aiming at how the familiarity of the users might change their judgment. In
the second analysis, six metrics of consistency (symmetry, depth of color, visual noise, contrast,
edge distortion, dominant colors) showed a good association with both aesthetics and complexity.

The above subjective methods appear to be time-consuming and error-prone, since they depend
on participants’ experience. In addition, these procedures are conducted at a late design stage which
may cause a substantial delay in the release of the application.

2.2 Quantitative evaluation methods
In order to resolve the manual interpretation of rules, Ines et al. used the genetic programming
to create evaluation rules for the automatic detection of usability defects in MUI [16]. To provide
user-adapted detection rules, the authors considered the user profile parameters, such as motivation,
level of experience, and age. These rules are a combination of user criteria, metrics, and defects.
Their methodology was 70% successful. In the same line, Riegler and Holzmann suggested a set
of 8 complexity metrics (number of UI elements, the smallness of element, misalignment, density,
imbalance, the complexity of color, complexity of typography, and inconsistency) to determine
the visual appearance of mobile apps user interfaces [41]. The method is based on a computer
vision technique, which does not require the parsing of any code. The critical weakness of this
analysis is the lack of tuning of metrics thresholds. As well, the metrics were not given any weights
to know which parameter contributes more to the complexity. Alemerien and Magel introduced
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GUIEvaluator, a metric tool that assesses the complexity of a GUI automatically. The method
measures five quantitative measurements: orientation, grouping, size, density, and balance [1]. The
authors have expanded GUIEvaluator to GUIExaminer, an SLC (Screen Layout Cohesion) metric
measurement tool. The SLC is a hybrid metric gathering aesthetics (structural and color), and
semantic dimensions of interface layout [2]. Soui et al. have developed a plugin called PLAIN
that evaluates the usability quality of Android mobile apps user interfaces [47]. Eight metrics are
determined by the tool: regularity, composition, sorting, complexity, integrity, density, repartition,
and symmetry. We found that the parser used in PLAIN considers the ViewGroups and the layouts
as visual components to evaluate metrics computation. Such a method can have an inaccurate
number of components of the visual graph. Zen and Vanderdonckt have proposed QUESTIM, a
region based method to measure a MUI as a screenshot based on a collection of metrics such as
density, balance, balance, symmetry, borderBalance, borderDensity. User will load the website,
upload a screenshot and draw the regions using a rectangle form [56, 57]. As selected arbitrarily,
this analysis lacks the automated adjustment of metric thresholds. Alternatively, new metric values
will be determined based on the shapes of the regions. In the same vein, a tool named tLight has
been proposed with eight complexity and color metrics to assess the graphical quality of webpages
and iPhone apps. The metrics only showed a high significance on webpages due to the different
layouts and design guidelines used by Web and iPhone apps. [29].
None of the above tools implement a module for identification of defects, as we present in this

study. However, we use QUESTIM and PLAIN to assess the accuracy of our proposed tool’s metrics
calculation module.

2.3 Genetic algorithms for the detection of design violation
Defining the defects detection rules manually requires extensive UI/UX domain knowledge. How-
ever, these manually constructed rules are not scalable, because designs are rapidly changing, and
can not match the new properties of MUIs. Except for a cyclic manual regulatory definition that
requires considerable effort and time. Researchers adopted the genetic algorithms (GA) to produce
detection rules to cope with the problem of rules interpretation. GA is a family of algorithms for op-
timization that works to find solutions to complex issues. It is considered to be a highly ideal search
method to pursue the best resolution of problems with a large number of possible solutions [20].
The genetic algorithms with multi-objectives are focused on satisfying two competing objective
functions. The GA has been used extensively in identifying code smells in software quality domains,
which are internal poor design issues that may impede the quality of the application [14, 22, 54].
Shoenberger et al. exploited the genetic programming to generate detection rules for bad code
practices committed in JavaScript projects [45]. Along the same line, the multi-objective genetic
algorithm (MOGP) was used by Kessentini and Ouni to find the best set of detection rules covering
the higher number of bad code practices. Their method hit an average of more than 82% precision
and a 77% recall [18]. In our research, we use the multi-objective genetic algorithm NSGA-II to
produce the detection rules.

3 BACKGROUND
3.1 Metrics definition
Metrics based assessment methods are designed to quantify the quality of user interface designs.
Our ADDET tool implements 15 metrics including 14 metrics that 1 were selected from various
studies [17, 33, 34]. Our method has the most significant number of calculated metrics in the
graphical user interfaces assessment area, to the best of our knowledge. The effort to compute

1All the 14 selected metrics formulae can be found in the appendix
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several metrics is to satisfy most of MUI’s structural properties before a defect is triggered. We
describe 12 state-of-the-art metrics in Table 1 and Table 2 that could be demonstrated with a MUI
prototype. All left prototypes show non-violation of the corresponding metric property. As for the
three metrics remaining, we define their purpose as follows:

• Nb-Elements: It computes the number of components in a single MUI [41]. To normalize this
metric, we evaluated a set of 80 MUIs and selected the minimum and the maximum number
of components. Then, we computed the normalization equation (1). with: margin=[0,1], m1=1,
m2=0.

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑚𝑒𝑡𝑟𝑖𝑐𝑉𝑎𝑙𝑢𝑒) = (𝑚1 −𝑚2) ∗ ( (𝑚𝑒𝑡𝑟𝑖𝑐𝑉𝑎𝑙𝑢𝑒 −𝑚𝑖𝑛)
(𝑚𝑎𝑥 −𝑚𝑖𝑛) ) +𝑚2 (1)

• Complexity: This metric is the sum of all the computed metrics in this analysis, as described
by [33]. It provides a relative score about the composition of the MUI, taking into account the
variability of all structural aspects. Complexity metric is a descriptive metric and is therefore
not used in any of our study’s statistical measures.

• Clarity: The MUI’s clarity relates to how comprehensible the interactive elements are. In
reality, Hannah Alvarez [3] has shown that only 60% of users have successfully predicted the
functionality of an unlabeled icon, while 88% of the time, users have been able to correctly
anticipate what will happen when they tap a labeled icon. Thus, we provide the Clarity metric
which counts the number of android: text, android: title, and android: hint label attributes by
the number of buttons, menu items, and editTexts elements. Equation (2) provides the metric
formula.

𝐶𝐿 =

∑𝑖=𝑛
𝑖=1 (𝑙𝑎𝑏𝑒𝑙 + 𝑡𝑖𝑡𝑙𝑒 + ℎ𝑖𝑛𝑡)∑𝑖=𝑛

𝑖=1 (𝑏𝑢𝑡𝑡𝑜𝑛 + 𝑖𝑡𝑒𝑚 + 𝐸𝑑𝑖𝑡𝑇𝑒𝑥𝑡)
(2)

In Figure 1, we present an illustrative example portraying the issue of a comprehensible MUI against
a non-comprehensible MUI.

Fig. 1. A comparison of clarity level: (left) clear navigation ; (right) difficult navigation.
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Table 1. Metrics definition with an illustrated prototypes

Metrics

1-Balance 2-Economy

It provides an equal distribution of components weights
between the different parts of a MUI. This metric is
suggested by [33].

It consists of minimizing the different components sizes
to display the information in a simple and clear way.
This metric is proposed by [33].

3-Cohesion 4-Layout Uniformity (Uniformity)

It is a measure of the degree of conceptual inter-
relatedness of components parts. It is based on promot-
ing similar aspect ratios, which refers to the relationship
between heights and widths. Cohesion is achieved by
maintaining a consistent aspect ratio of screen elements.
This metric is suggested by [10].

It measures the degree of consistency and orderliness
of a MUI layout. It calculates the layout of different
components “height, width, alignment points from 4
edges". This metric is suggested by [36].

5-Simplicity 6-Density

It measures how many elements are situated on the
same X and Y axis. It is seen as a trade-off between
optimizing the number of elements and screen overload.
This metric is suggested by [33].

It measures the screen area occupied by objects. The
aim is to minimize the density level of occupied area
displayed to the user. This metric is suggested by [33].
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Table 2. Continuity for Table 1:Metrics definition with an illustrated prototypes

Metrics

7-Regularity 8-Sequence

It consists of providing consistent spacing between MUI
elements based on horizontal and vertical alignments to
organize the layout structure. This metric is suggested
by [33].

It aims to organize MUI elements from top-left to
bottom-right corner. This metric is suggested by [33].

9-Homogeneity 10-Grouping

It measures the degree of evenness of objects distribu-
tion among the four parts of the screen. The quadrants
should contain a more or less equal number of elements.
This metric is suggested by [33].

It aims to strengthen the attraction between widgets by
grouping them at the center of the MUI. It is the degree
of making widget groups be as one unit. This metric is
suggested by [10].

11-Unity 12-Integrality

It is the extent to which the screen seems homogeneous.
Unity tends to unify the MUI elements into the same
shapes, same colors, and the same size. For ease of de-
velopment, we exclude the color from the formula. This
metric is suggested by [10].

It aims to minimize the use of different widgets sizes on
the MUI, and that of the space between the area occu-
pied by components and the frame area.Wematched the
lengths of the TextFields to get same margin distance.
This metric is suggested by [33].
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3.2 Structural aesthetic defects
To select the set of our structural defects, we looked for the ones that have been widely discussed
in previous studies [8, 9, 16, 17, 44].

• Imbalance of MUI (IM): It represents the unequal distribution of the components on the four
parts of a MUI layout. Figure 2 (left) provides an example of an imbalanced MUI.

• InCohesion of MUI (ICM): It is the lack of the inter-relatedness of MUI components. Figure 2
(middle) provides an illustrative example of a triggered InCohesion defect.

• Overloaded MUI (OM): From an end-user point of view, the overloaded MUI defect is detected
when the user sees a high number of components on the MUI. Figure 2 (right) provides an
illustrative prototype.

Fig. 2. An illustration of an Imbalanced MUI (left), an In-cohesive MUI (middle) and an overloaded MUI
(right)

• Incorrect Layout of Widgets (ILW): From an end-user perspective, when the widgets have a
a high number of different layouts, the ILW defect is detected. That is, the widgets are placed
in different rows and columns. Figure 3, offers an illustrative illustration of defective widget
layout with the right layout version to differentiate the difference between the ILW and the
ICM defects.

Fig. 3. An illustration of Incorrect layout defect: (left) Incorrect layout ; (right) correct layout.

• Difficult Navigation (DN): It entails the lack of descriptive labels associated with components
to describe its functionality. Figure 1 provides an illustrative prototype of a DN defect.

4 TOOL IMPLEMENTATION
The tool 2 is a part of a framework currently being developed to provide an automatic evaluation,
recommendation, and restructuring support of Android MUIs graphical components. ADDET
(Aesthetic Defects DEtection Tool) is a Java-based evaluation tool developed to assess Android
2All the assets used in this study: tool, experiment results, questionnaires, MUIs, etc, are available at https://github.com/
NarjessBessghaier/Defects_Detection_Tool
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mobile user interfaces. The tool evaluates native apps as well as hybrid apps wrapped into apk
format 3. The only downside with hybrid apps is that the simulator reads all elements of the MUI
as views. That is, we can not tell the different types of active widgets. Therefore, the metrics of
grouping and unity does not determine an accurate value. Our tool includes three modules, as
shown in Figure 4: 1) parser, 2) metrics calculator, and 3) detector defects.

Fig. 4. Modules of the proposed tool ADDET

4.1 STEP1: Extraction of MUI graphical data
To extract data from MUI components, scholars have used several computer vision techniques
that include methods for acquiring, processing and analyzing image dimensional data [41, 57]. In
this study, we use a simple yet effective way to extract geometrical data accurately from a MUI.
Our extraction process consists of running the application via the Android studio packaged tool
UIAutomatorViewer. The tool leverages the Android Debug Bridge (ADB)4 server to generate the UI
layout-hierarchy, allowing to inspect and retrieve the properties of the on-screen UI components.
The UIAutomatorViewer allows us to save a dump file5 that encompass all components’ geometric
data.

4.2 STEP2: Parsing the dump file
The dump file provides the properties of all visible and invisible components such as check-
able, clickable, enabled, focusable, scrollable, selected, etc. All components names are declared
in a "<class="android.widget.NAME">" tag and the components properties are declared in a
"<bounds="[x,y][w,h]">" tag. The views elements of wrapped hybrid applications are declared
in a "<class="android.view.View">" tag. Thus, our hybrid apps parser extracts only the View
class corresponding bounds. The native apps parser matches the regex patterns and retrieves all
content in between the widget’s tags. To use the parser, the user needs to specify the path to his/her
dump file. As presented in Figure 5, an Xls file will be generated, including all types of components
with their geometrical values. Then, we remove all tags related to RelativeLayout, LinearLayout,
and FrameLayout components as they are invisible containers.
3apk: It is a file format for Android operating system applications.
4The ADB server is a plugin used in Android application development (Android studio), where the developer can run his/her
application on in either an emulator instance or in the plugged-in device.
5A dump file with the extension (uix) is used to save the UI layout-tree from the debuggable application. After inspecting the
MUI elements the file could be saved via the UIAutomatorViewer emulator. It includes the MUI tree with all the geometric
data of each element, with additional attributes such as ’text,’ ’disabled,’ ’clickable,’ etc.

ACM Trans. Interact. Intell. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:10 Bessghaier et al.

Fig. 5. Extraction of a MUI components geometrical data of the application AccuWeather V6.0.8-free

4.3 STEP3: Metrics measurement
ADDET assesses the structural quality of the MUI based on a set of 14 metrics (we excluded the
complexity metric). Such metric values are measures of other structural defects. A metric value can
mean one or more defects are present. Thus, we need to equate these values with an acceptable
threshold in the inspection process. The boxplot technique allows us to generate a threshold after
calculating the min, max, and median of the values set. We evaluated a list of 11 applications of
different categories having 80 MUIs. Figure 6 shows the generated thresholds of our proposed
metrics.

Fig. 6. Metrics values calibration using box plot technique

4.4 STEP4: Defects detection
This method consists of creating rules for MUI evaluation detection. Due to a large number of
potential combinations, Ines et al. used the technique of mono-objective genetic programming (GP)
for the generation of rules combining different concepts: metrics, demographics of user-profiles
and experience information, and usability defects [16]. In our context, we omitted the adaptation
of the user profile for two reasons. 1) Standard design problems: we seek to define design problems
independently of the users’ perception of the design. 2) Restructuring: as a potential direction, we
plan to restructure the structural aesthetic defects of the MUI. It is not an easy process if we aim to
fix every defect based on specific user profiles. We used the same genetic programmingmethodology
to produce assessment rules for our module of identification of defects. In our research, the added
values are: 1) the use of multi-objective genetic programming (NSGA-II), taking into account two
opposing objectives; 2) assigning a weight to each metric to demonstrate its significance in the
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identification of a defect. It is necessary to apply the genetic algorithm to know which set of metrics
is associated with a specific defect. The process has three steps: 1) the development of a base of
examples for the NSGA-II training; 2) the adaptation of the NSGA-II to our context; 3) the metrics
weight assignment.

4.4.1 Creation of the base of examples.
This process consists of building a base of examples to train the genetic algorithm to improve the
precision of its defect extraction. This training gives us the correct rules for the assessment. The
basis of examples is conceived as a pair of < MUIs, structural aesthetic defects >. The first segment
consists of the name of the evaluated user interfaces, and the second segment consists of the user
opinion on potential structural aesthetic defects of the evaluated MUI. This step is achieved through
a Google form questionnaire, in which 20 participants obtained five well-explained structural
aesthetic defects and are asked to assess a collection of 80 MUIs. We have divided the MUIs into five
questionnaires, each of which has 10, 10, 20, 20, and 20 MUIs because the number of user interfaces
is very high. The user-profile diversity allows the genetic algorithm to train and to return the
best rules. The base of examples contains user interfaces, which were tested manually to identify
potential structural defects. The MUIs are tested in an iterative manner during the training stage of
the algorithm to pick the most frequently identified aesthetic defects and the set of metrics. The
user profile and the metrics are independent variables since these are automatically determined by
the tool, so there is no intervention from the user side in the measurement of these metrics (see
subsection 4.4.2 for more information on combinations of defects so metrics).
Selection of Applications:We have filtered 510 Android open-source software hosted at GitHub.
Our application selection process is designed to ensure the app has a high user rating in the Google
Play store. In Table 3, we provide the number of user interfaces analyzed and the characteristics of
our applications.

Table 3. Android applications involved in the study.

Name Category # MUI User rating
GnuCash Finance 8 4.4
2048-app Game 2 4.7
Tusky Internet 8 3.9
Shuttle Music Music 10 4.3
C-Geo Navigation 14 4.4
SimpleGallery Photos&Videos 11 4.5
Telecine Photos&Videos 2 3.7
SoundRecorder Utilities 2 4.2
AmazeFileManger Utilities 9 4.3
Orgzly Writing 8 4.7
NewPipe Social Networking 6 4.2

Subjects: In this study, we invited twenty students of different ages, experience levels with software
quality, and educational level (70% females, 30% males). We had 30% Ph.D. students (3 students
in the field of software quality, one student in multimedia design and two students in the field of
machine learning), 20% students in computer science with a bachelor’s degree, and 50% students
in the field of master’s degree. The data collected about the participants indicate that only 55% of
respondents have software quality assessment experience. The subjects were asked to assess the
MUI screen-shot’s structural quality. Therefore, no familiarity is needed with the application. We
give the characteristics of the participants in Table 4.
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Table 4. Participants characteristics

Educational level Age Sex

Ph.D Master Bachelor 21-25 26-30 M F
6 10 4 14 6 6 14

4.4.2 NSGA-II Adaptation.
Using a multi-objective genetic algorithm (NSGA-II), we generate evaluation rules as an optimisa-
tion problem. The GAmethod starts by describing a problem space as a set of attributes (inputs) that
define potential solutions to a problem. The genetic algorithm carries out random combinations
of these attributes within this model space, and tries to find the best combination to produce the
highest fitness measure. Growing population solutions are tested via a fitness function to determine
its efficiency in detecting the defects. These solutions subsequently fall under the control of the
genetic programming reproduction operators, which are mutation and crossover. These operators
strive to fine-tune the collection of solutions to keep those with the best fitness interest creating a
new generation of rules. This cycle is repeated for a fixed number of generations until the most
suitable individual is identified. In the search area, the quality of the rules generated is calculated
by the use of two opposing objective functions (fitness functions).
Fitness 1:Maximize the number of detected defects in the rules. It compares from the examples
base the list of observed defects in the rules and the expected ones. Equation (3) represents our
fitness function.

Fitness1(s𝑖 ) =

∑size
𝑗=1 (

NbR𝑗

NbOcc𝑗 in D
)

NbT
(3)

With
NbR:Number of rules detecting defect j, NbOcc: Occurrence of defect j, D= dataset, NbT: Number
of defects type.
Fitness 2: Minimize the number of rules. i.e, return the solution with the minimum number of
rules. Equation (4) represents our second fitness function.

Fitness2(s𝑖 ) =𝑚𝑖𝑛 number-of-rules (4)

Input: In our settings, the genetic algorithm takes as its inputs a base of examples containing
some manually inspected projects, 13 structural metrics (we exclude the complexity metric as it
is a descriptive metric, as well as the clarity metric as conceived for a specific defect) and four
structural aesthetic issues excluding the DN defect (see section ??). As well, a threshold between [0,
1] and an operator of ("<=,>=") are randomly assigned to the metrics.
Rules: Our goal is to combine the collection of metrics pertinent to a specific defect automatically.
According to the definition of metrics, we presume that the maximum number of metrics that can
detect one defect is about 6. So we created six rule classes that contained 1 to 6 metric combinations,
respectively. Then, we ask the NSGA-II to randomly pick a rule of class during the process of rule
generation. The logical statements ("AND, OR") are assigned to all rules at random.
Output: The process output is a rule-tree structure, where we consider rules of one to six metrics.
We choose the combination that is true for each defect, based on the metrics values of each user
interface.

The NSGA-II executes several combinations among the inputs to produce the best rules. The best
of them are the ones which adhere to the base of examples. Our aim is to increase the number of
detected defects in the assessment rules and reduce the number of rules with maximum defects (see

ACM Trans. Interact. Intell. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.



Detection of MUI Structural Defects with a Metrics-based tool 1:13

section 4.4.2 for more details). In particular, to generate a set of rules which have a good ability to
detect the maximum number of defects in the base of examples. To this end, a heuristic search for
the best set of combinations is performed on the base of examples. Our proposed algorithm has four
steps : ( 1) initial population generation, (2) selection of individuals, (3) operators of reproduction;
and (4) new individuals’ generation.

4.4.3 NSGA-II reproduction operators.
This step is based on two fundamental genetic operators: crossover and mutation.

• Crossover: During crossover, we create new individuals (offspring) by the selection operator
combining portions from the selected individuals (parents). The algorithm selects the two-
rule cut-point, recombining the four parts into two new rules. Subsequently, both old rules
(parents) and new rules (offspring) pass to the population’s next generation.

• Mutation: It consists of making some modifications over the newly created rules from
the crossover to maintain the diversity within the population. In our setting, the mutation
operator changes the metrics, the value of the metrics, or the arithmetic operators.

The high-level pseudo code of the NSGA-II is given in Figure 7.

Fig. 7. Pseudo code of adapted NSGA-II algorithm

While the number of solutions per population and the number of rules per solution are not
yet reached, NSGA-II randomly selects a set of rules from among the six classes given (line 3).
The algorithm produces random values for the metrics in lines 4 and 5, and associates them with
random operators. The algorithm allows an initial population (a set of solutions) until all of the
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rule variables are ready. Each of these solutions includes a set of assessment rules (line 6) and
incorporates the solution generated within the population (line 7). The algorithm checks, from line
12 to 14, if the present defects in the rules exist in the base of examples. It also checks whether the
given random metric values are in the matrix (a matrix is declared in the algorithm containing the
metrics values for the 80 evaluated MUIs). For any solution, the algorithm tests the fitness functions
in lines 15 and 16. NSGA-II then sort out every solution based on fitness values (line 17). The
algorithm begins its optimization from lines 18-20 by applying its crossover and mutation operators
to produce new rules. The previous stage for the operators of reproduction is the exclusive selection
that gives priority to qualified individuals and discards the corrupted individuals. This step helps
the individuals to pass on to the population of the next generation (line 18). For the next generation
a new population (P) with the new merged rules (line 21) is created, and the best solution is saved
(line 24). The algorithm ceases when it completes the maximum iteration number and returns the
best set of evaluation rules (line 25). The parameter setting for all executions of the NSGA-II is
specified in Table 5.

Table 5. NSGA-II parameters calibration

Parameter Score

Population size 50, 100, 200
Mutation probability 0.1, 0.2, 0.5
Crossover probability 0.9, 0.8, 0.6
Max generations: stopping criterion 100, 200, 500
Numbers of rules in populations 20-30

After several algorithm executions, we select the generation with the best values for fitness
functions (the minimum set of rules which detect most defects). We present the obtained results
from the NSGA-II in Table 6.

Table 6. Metrics combination for each defect

Defects Density Economy Integrality Nb-
elements

Sequence Regularity Simplicity Homogeneity Uniformity Balance Unity Cohesion Grouping

OM X X X X
ILW X X X X X
ICM X X X X
IM X X

4.4.4 Weighting Metrics Importance.
We are interested in assigning a weight to each metric to illustrate its importance when detecting a
structural aesthetic defect. To this end, we use the WEKA framework to manipulate such weighting
algorithms. WEKA [15] is a software that gathers a set of different machine learning algorithms.
It offers a collection of pre and post-processing tools as well as some methods for evaluating the
result of learning techniques applied to any given data set. Besides the classification and association
algorithms, WEKA implements some features selection and weighting algorithms.
Wrapper: It considers the subset of features with which the classification algorithm performs the
best. These wrappers focus on revealing the essential elements by assigning a rigid weight of 0 and
1. The wrappers are classified as feature selection algorithms.
Filter: It uses an attribute evaluator (correlation, infoGain, etc.) in association with a ranked
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algorithm to rank some/all features in the data set (Best first, Ranker, etc.). The filters differ
from the wrappers in terms of weight value. Some of the filters would rank the features in an
ascendant order (high to low), and some others allow a finer differentiation between the features
by assigning each a valued weight ranged between 0 and 1. Then, the feature degree of importance
is mirrored in the magnitude of its weight. Among the available ranking algorithms, we chose the
InfoGainAttributeEval (IGAE) to assign weights to our metrics and the CorrelationAttributeEval
(CAE) to compute the correlation between the metric and the defect using the Pearson correlation.
Metrics with weights equal to 1 are separated with an OR operator to ensure a defect can be
triggered by one measure. Operator AND is assigned to metrics with weights below 1. It allows us
to ensure satisfaction of the metrics threshold before a defect is triggered. For ILW and ICM defects,
we declared two conditions to prioritize the metrics with middleweights. Table 7 summarizes the
structural aesthetic defects detection rules as proposed in this work.

Table 7. Detection rules for Android MUI structural aesthetic defects

Defect Metrics combinations

OM 1-Nb-Elements>=0.660 OR Density >=0.735 OR (Economy<=0.365 AND Integral-
ity<=0.465)

ILW 1-Regularity<=0.345 OR (Uniformity<=0.377 AND Homogeneity<=0.478)
2-Regularity<=0.345 OR (Simplicity<=380 AND Sequence <=370)

ICM 1-Cohesion<=0.423 OR (Unity<=0.438 AND Sequence<=0.370)
2-Cohesion<=0.423 AND Grouping<=0.505

IM 1-Balance<=0.513 OR Homogeneity<=0.478
DN 1-Clarity<=0.553

5 VALIDATION
5.1 ResearchQuestions
To evaluate the reliability of the proposed tool ADDET, we formulate the following research
questions:
(1) RQ1: To what extent does ADDET behave as/better than QUESTIM and PLAIN?

𝐻10: There is no difference between ADDET and QUESTIM’s shared metrics values.
𝐻20: There is no difference between ADDET and PLAIN’s shared metrics values.

(2) RQ2: To what extent is ADDET accurate in detecting most defects?
To answer research question 1, we conducted a comparative study with two existing tools QUESTIM
[57], and PLAIN [47] (see sub-section 2.2 formore information about the tools). The analysis includes
evaluating a common set of metrics used to measure the structural quality of MUIs.
To answer research question 2, we conveyed an experiment with five experts in order to determine
the tool’s accuracy in detecting most of the defects.

5.2 RQ1: To what extent does ADDET behave as/better than QUESTIM and PLAIN?
5.2.1 Study design.
The study’s goal is to verify whether the proposed tool could use a set of metrics to reliably describe
different structural aspects of a MUI. The metrics chosen are diversified and discuss various MUI
representational angles. Therefore, the metrics are intended to help developers refine a MUI design.
We compare the results of a specific sub-set of metrics against QUESTIM and PLAIN. The distinction
is based on an evaluation of 80 MUIs. We present the technical features of PLAIN, QUESTIM, and
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Table 8. Tools characteristics

Criteria PLAIN QUESTIM ADDET

Computes visual metrics Yes Yes Yes
Requires source code No No No
For mobile apps Yes Yes Yes
Requires regions drawing No Yes (Manual) No
Number of metrics 8 11 15
Structural defects detection No No Yes

ADDET in Table 8.
Our tools comparison is conducted as follows:

• Balance and Simplicity metrics comparison between ADDET and QUESTIM .
• Homogeneity, Sequence, and Integrality metrics comparison between ADDET and PLAIN.
• Density metric comparison between ADDET, QUESTIM, and PLAIN.

All shared metrics between ADDET, QUESTIM, and PLAIN use the same formulae proposed by Ngo
et al. [33]. The calculated scores vary mainly because of the various ways of obtaining geometric
data for the components. We remember that the invisible ViewGroups and different layouts are
considered by Soui et al. [47] as graphical components. Zen and Vanderdonkt [56, 57] extract
geometric data of the components based on the regions manually defined. i.e, any difference in a
region shape would return different X, Y, Width, and Height.

5.2.2 Statistical results.
To determine the degree to which the proposed tool produces the same or better results as QUESTIM
and PLAIN, we perform the paired parametric t-test as the data collected always display a normal
distribution, with df=95 for a level of significance of .05. We are aggregating data from the 80 MUIs,
taking into account metrics averages for the sake of clarity. We reject the null hypothesis if the
p-value is higher than .05. That is to say, ADDET did not get the same results. Thus, we will review
the metrics score manually to know if the method has conducted a correct or incorrect evaluation.
The results of the three comparisons are respectively presented in Tables 9, 10, and 11 with M refers
to the mean, Std=standard deviation, and P=p-value.
For clarification, in Figure 8, we present three evaluated MUIs in the QUESTIM evaluation tool
with their selection of corresponding regions.

Fig. 8. 2048-app (left), Search (middle), and to do (right) MUIs with their framed regions in QUESTIM

Comparison1: Results & Discussion
Balance: The results obtained from the t-test (M=.831, Std=.126), as shown in Table 9, suggest that
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there was no substantial difference between the tools ADDET and QUESTIM in the calculation
of metrics (t=.588, P=.573). QUESTIM is rating the MUIs as highly balanced, given the regions
represented in a balanced way, is not a surprising result.
Simplicity: The results of the t-tests (M=.256, Std=.187), as shown in Table 9, resulted in t=-1.631
and P=.14 of both tool simplicity metric values. These results point to the fulfillment of the 𝐻10 null
hypothesis. That is, in determining the simplicity of the MUIs, ADDET obtained the same results
as QUESTIM. We need to evaluate the returned scores cautiously, however. QUESTIM considers
the MUIs are easier than ADDET. In precise words, depending on the regions that the user draws
manually, he/she determines the user interface structure where other components can be skipped
accidentally. On the contrary, ADDET calculates a higher number of components, resulting in
a reduced level of simplicity. As we are looking for similar metrics evaluation between ADDET
and QUESTIM, the correct condition is considered to be 𝐻10. There is no significant difference
in the p-values >.05, which shows no evidence of the alternative hypothesis’s validity. However,
it suggests that ADDET obtained the same outcomes as QUESTIM to some degree and therefore
conducted a thorough evaluation.

Table 9. Comparison 1: ADDET vs. QUESTIM

Metrics ADDET QUESTIM
M t-val Std. P

Balance .831 .588 .126 .573
Simplicity .256 -1.631 .187 .146

Comparison2: Results & Discussion
As shown in Table 10, the same findings are noted with PLAIN, where no evidence supports the
validity of the alternative hypothesis; and thus, we do not hesitate to accept𝐻20 for the three metrics
with (M=.606, Std=.109), (M.689, Std=.091), and (M=.414, STd=.161) respectively. The findings for the
metrics of homogeneity, sequence, and integrality (t=.348, P=.726), (t=1.456, P=.214), and (t=-1.665,
P=.151), respectively, suggest that both ADDET and PLAIN performed the same MUI assessment.

Table 10. Comparison 2: ADDET vs. PLAIN

Metrics ADDET PLAIN
M t-val Std. P

Homogeneity .606 .348 .109 .726
Sequence .689 1.456 .091 .214
Integrality .414 -1.665 .161 .151

Comparison3: Results & Discussion
In both comparisons, as shown in Table 11, the t-test results between ADDET/QUESTIM and
ADDET/PLAIN (M=.731, Std=.059) and (M=.339, Std=.101) suggest the presence of a difference in
density metric measurement (t=-3.080, P=.023) and (t=3.192, P<.01), respectively. Therefore the null
hypotheses 𝐻10 and 𝐻20 are not applicable. We must note that each component area is calculated
by the density metric and compared with the frame area. QUESTIM calculates the metrics using
the X, Y, Width, and Height zones. PLAIN treats the layouts and ViewGroups as elements, while
ADDET considers only the visual components on the screen. The different number of calculated
graphical elements yielded a different assessment of density. The accuracy of the ADDET density
metric calculation is confirmed by the fact that the tool collects only the geometrical data of the
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visual components based on the inspection carried out by the UiAutomatorViewer, which has no
margin of error.

Table 11. Comparison 3: Density metric comparison between ADDET, QUESTIM and PLAIN

Tools Density metric
M t-val Std. P

ADDET/QUESTIM .731 -3.080 .059 .023
ADDET/PLAIN .339 -3.192 .101 <.01

As a validation for the left six metrics, and clarity’s sake, we qualitatively analyze the metrics
results for a set of the three MUIs (Figure 8) as presented in Table 12.
2048-app MUI: Visual perception: The components are located in the middle of the user interface
as shown in Figure 8. However, the left/right margins of the white space are more prominent than
the top/down margins. The MUI has over four widget styles, with six different sizes. ADDET: As
presented in Table 12, the tool measured scores are considered representative of the structural
aesthetics aspects of the MUI. For instance, the economy is estimated too low, and the existence of
different components resolutions justifies it. The Unity metric is around 0.2, as there are different
types of components and different margins spaces.
Search MUI: Visual perception: The MUI presented in Figure 8 groups all components in the upper
center side. However, all components have the same size and type, along with the same space
between the elements. ADDET: As presented in Table 12, we notice a change in the metrics values
with a low regularity level. The regularity metric measures 1) the extent to which the alignment
points are minimized, and 2) the extent to which the alignment points are consistently spaced. The
regularity score will decrease as we observe a large white space from the components group to the
bottom margin. The grouping is considerably high thanks to the consistent space, size between
the components. While the cohesion and uniformity metrics are estimated low (around 0.3) due to
inconsistency of white space between the layout margins.
To do MUI: Visual perception: As presented in Figure 8, this MUI is considered to be structurally
pleasing. It is cohesive (same white space between the components, components are positioned
in the center of the frame), uniform (more or fewer components have the same size), regular
and grouped. ADDET: As presented in Table 12, the metrics computation of cohesion, uniformity,
regularity, and grouping entail a correct evaluation of the MUI with a score of more than 0.6. The
economy level is considered medium with 0.4 and unity of 0.2. We recall that unity is a delicate
metric that computes the number of different components sizes and types and evaluates the relative
measure of the white space between components groups and that of the margins.

Table 12. Metrics computation for the 2048, Search, and To do MUIs

Metrics Mobile User Interfaces

To do MUI 2048 MUI Search MUI
Cohesion 0.835 0.862 0.615
Uniformity 0.831 0.849 0.577
Regularity 0.611 1.0 0.208
Economy 0.403 0.05 0.143
Unity 0.233 0.293 0.188
Grouping 1.0 1.0 1.0
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5.3 RQ2: To what extent is ADDET accurate in detecting most defects?
5.3.1 Study design.
The goal is to determine to what degree the proposed tool can detect most defects in a MUI. We
recall that our detection rules are restrictive as triggering one defect requires assessment and
satisfaction of multiple thresholds for structural properties. A set of 24 out of 80 measured MUIs
are rated as having three or more structural defects. To improve the tool’s applicability, we tested
500 additional MUIs from the [12] RICO data collection, where 282 MUIs were holders with three
or more structural defects. To validate the accuracy of the tool in detecting the most number of
defects, five experts (1 Ph.D. student in the domain of software quality, and four engineers in 3D/2D
graphics design from the PALM 3D studio in Tunisia) evaluated the MUIs. The experts had no
previous idea about the types of the 306 selected MUIs in the study and were asked to 1) manually
analyze the quality of a MUI and explain the triggering of a defect and 2) compare the results
with the results detected by ADDET. It took the experiment about 20 days to collect the findings
of all the experts with an average of 17 MUIs per day. We asked the experts to give +1 for each
correct detected defect (true positive), -1 for incorrectly detected defects (false positive), -2 for
incorrect detected defects (false negative), and -3 for correct non detected defects (true negative).
Therefore, ADDET was evaluated on the basis of a series of evaluation criteria widely used to test
the efficiency of machine learning models.

• True positive (TP): if a truly existent defect is detected it is called TP;
• False positive (FP): however, if a non-existent defect is detected; it is called FP;
• True negative (TN): if a truly existent defect is not detected it is called TN;
• False negative (FN): it is the ¯𝑇𝑃 , where a non-existent defect is not detected.
• Recall: it is the proportion of the truly existent defects that are correctly detected. It describes
the coverage of the tool in detecting the truly existent defects. The recall is computed as
follows:
Recall= True positive/(True positive+ False negative);

• Precision: it is the fraction of correctly detected defects from the set of detected defects (true
positive + false positive). The precision is computed as follows:
Precision= True positive/ (True positive+ False positive);

• F1 score: it is the average of Precision and Recall. It takes both false positives and false
negatives into account. The F1 score is computed as follows:
F1 score= 2*(Recall * Precision) / (Recall + Precision).

As shown in Table 13, and out of 4992 detected defects, ADDET has scored an almost 71% accuracy
in detecting genuinely existing defects. A 63% F1 score is considered suitable as an average of
correctly detected defects resulting from actually existing defects and correctly detected defects
resulting from all detected defects. Based on the expert’s assessment and informative descriptions,
we have found that: 1) the experts consider the ICM defect the most easily identified. 2) Just 11.18%
of DN defect instances were accepted by the experts, who clarified that most of the icons used
are common and thus understandable. 3) The defects of ICM and ILW are often co-approved by
experts (co-exist in MUIs). 4) IM and ILW defects are not found together often. An imbalanced MUI
does not necessarily mean the components are not located in incompatible cells of the layout. The
left/right margins, the component size, and the padding may be different. Consideration by the
expert promotes focusing on the co-occurrence of defects.

6 DISCUSSION
Regarding RQ1: To what extent does ADDET behave as/better than QUESTIM and PLAIN?.
We evaluated ADDET’s metrics module against two existing tools, QUESTIM and PLAIN. Because
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Table 13. ADDET’s performance in detecting most defects

TN FN TP FP Precision Recall F1 score

# 113 2545 3525 1467 0.7061 0.5807 0.6343
% 2.26% 51% 71% 29.3% 71% 58% 63%

of the diversity of the used metrics, we only assessed the set of common measures. The results
suggest that the tools computed the same metric values approximately, except for the density
metric where ADDET performed better than QUESTIM and PLAIN. We have a common number of
components for most MUIs-X, Y, Length, and Height. Therefore, the density metric measures a
higher value of the number of occupied area components than the container area. Consequently, a
higher value of the density is returned. With respect to the complete validation, specific points
have to be cleared. The selected six metrics are considered delicate, as they assess some critical
aspects such as "different spaces between components, different types, and sizes of widgets, different
occupied areas." The remaining six metrics (excluding complexity, clarity, and Nb of elements)
such as Cohesion, Unity, Grouping, Uniformity, Regularity, and Economy are tackling the aspects
of: "position of each widget type, number of different heights and widths, number of rows and
columns, etc." The results of the metrics have provided an appropriate assessment of the structures
of the MUIs. And we can conclude that the findings obtained gave us an indication of ADDET’s
efficiency in computing the metrics.
Regarding RQ2: To what extent is ADDET accurate in detecting most defects?. To address
this question, we have asked five graphic design quality experts to analyze the found 306 MUI
defects. Such MUIs are classified by ADDET as holders with three or more structural defects. The
experts assigned a weight to each TN/TP/FN and FP and accepted about 71% of the detected defects.
The true negatives represent only 2.26%, which indicates that many true positives have not been
missed by the tool. Two potential explanations for the false positives are: 1) metrics thresholds were
not met in the OR statements, or 2) one of the metrics were not met in the AND statements. These
combinations of metrics in the rules have sharpened the tool’s detection accuracy by satisfying
the basic structural metric properties to trigger a specific defect and then fulfilling the secondary
metrics. For example, if the homogeneity of the MUI is low and the uniformity is high, there would
be no ILW defect triggered. Our goal was to ensure that all the structural properties of a single
defect are satisfied. Nevertheless, there were reported 29.3% of the true negatives. Often the experts
may be rough in their identification and see certain structural aspects that can not be formulated
with equations as an example of the wrong positioning of graphical elements. We know that each
expert sees the design from his/her perspective, based on his/her design assessment experience,
however, we wanted to ensure our tool was able to identify the most noticeable defect(s). We
conclude that with a precision of 71% and a recall of 58%, our proposed tool will correctly detect
defects.

7 THREATS TO VALIDITY
In this section, we report threats to the validity of our study.
The internal threats of validity present the factors that do not support our tool’s applicability.
We have selected a set of Android apps on Google Play Store that is well rated by end-users. Having
a high user rating means the app reflects a high-quality product that can please a wide variety of
end-users. To build our base of examples, we relied on evaluating the selected MUIs from twenty
users with diversified profiles. In addition, we used 14 metrics that are used in several studies to

ACM Trans. Interact. Intell. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.



Detection of MUI Structural Defects with a Metrics-based tool 1:21

evaluate the structural aesthetics quality of a MUI and proposed our metric (Clarity) to evaluate
the clarity in terms of the comprehensibility of the labels of components.
The construct validity concerns the tool’s error rate in computing metrics values and detecting
defects. We have built a tool which calculates a set of 15 metrics based on the geometric data
taken from the UiAutomatorViewer. This latter inspects every single item in the MUI layout with its
positioning and dimensions. The proposed tool is based on a collection of restrictive rules which
aim to satisfy several structural variables before triggering a defect. Besides, the box-plot was used
to produce thresholds. Those values can be manually tuned by an expert to give superior results,
we aimed to automate this phase in this research, however, and our findings have been statistically
noteworthy. These thresholds may not be the best ones, so we need to test a broader range of
MUIs to improve threshold generalization. The tool is limited to evaluating MUIs designed entirely
through XML formatting language. That is, evaluating maps or applications for animated games
using Java may not produce accurate results.
The external threat centers around evaluating the scalability of our findings. To the best of our
knowledge, ADDET is considered the pioneer in detecting structural defects compared to existing
studies which only provide metrics calculation. It is true that a metric actually informs about a
structural problem. Nonetheless, marking the structural issues is helpful, so developers/designers
do not need to re-understand the purpose of a metric. This tool will enable us to build a large
user interface base that will be the first step towards automated MUI design restructuring. Our
measurements and defect identification are independent from operating system architectures.
However, the tool’s parser uses patterns which are unique to the format of generated dump files.

8 CONCLUSION
In this paper , we proposed the ADDET tool for automated evaluation and identification of struc-
tural aesthetic defects of the Android mobile user interface. The first phase involves collecting a
well-known set of metrics for assessing aspects of structural aesthetics. Also, we carefully selected
a set of five defects that represent specific structural problems with MUIs. Using a multi-objective
genetic algorithm (NSGA-II), we put our effort into automatically assigning each defect to the
corresponding metrics. To increase the detection’s precision, we thought about calculating how
necessary a metric is to detect a specific defect. The tool’s quantitative and qualitative analysis
shows its usefulness in the evaluation and detection of structural design issues. As for future
research, we plan to extend the collection of assessed MUIs. Further research into the weight
of metrics regarding their contribution to an assessment of MUI’s structural aesthetics will be
of interest. This research would require an advanced empirical study, in which we evaluate the
different designers’ visual techniques and analyze the critical aspects that designers see as problem-
atic. We can also trigger the need for a survey, where a large scale of end-uses rank the property
they see more critical. Most significantly, we would like to explore how the MUI evolves in func-
tion of the number of defects? That is to say, are developers fixing the defects that occur? We
plan to research the survivability of a MUI’s structural aesthetic defects alongside an applica-
tion’s evolution. This empirical analysis will help in figuring out which defect can be eliminated
easily.
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Mathematical formulae of the 14 selected metrics from literature

1- Density metric

Dst = 1 − 2|0.5 −
∑𝑛

𝑖 𝑎𝑖

𝑎𝑓 𝑟𝑎𝑚𝑒

| ∈ [0, 1] (5)

𝑛 = Number of objects
𝑎𝑓 𝑟𝑎𝑚𝑒 = Area of the frame
𝑎𝑖 = Area of interactive object i .

2- Sequence metric

SQM = 1 −
∑

𝑗=𝑈𝐿,𝑈𝑅,𝐿𝐿,𝐿𝑅 |𝑞 𝑗 − 𝑣 𝑗 |
8

∈ [0, 1] (6)

𝑞 𝑗 = {𝑞𝑈𝐿, 𝑞𝑈𝑅, 𝑞𝐿𝐿, 𝑞𝐿𝑅} = {4, 3, 2, 1}

𝑣 𝑗 =


4, if 𝑤 𝑗 is the largest in w
3, if 𝑤 𝑗 is the 2nd largest in w
2, if 𝑤 𝑗 is the 3rd largest in w
1, if 𝑤 𝑗 is the smallest in w

with:
j = UL , UR , LL , LR
𝑤 𝑗 = 𝑞 𝑗

∑𝑛 𝑗

𝑖
𝑎𝑖 𝑗

𝑤 = {𝑤𝑈𝐿,𝑤𝑈𝑅,𝑤𝐿𝐿,𝑤𝐿𝑅}
where:

UL = Upper-left , UR = Upper-right , LL = Lower-left , LR = Lower-right
𝑎𝑖 𝑗 = the area of object i on quadrant j.
Each quadrant is given a weighting in q.

3- Regularity metric

Rgl =
|𝑅𝑀𝑎𝑙𝑖𝑔𝑛𝑒𝑚𝑒𝑛𝑡 | + |𝑅𝑀𝑠𝑝𝑎𝑐𝑖𝑛𝑔 |

2
∈ [0, 1] (7)

𝑅𝑀𝑎𝑙𝑖𝑔𝑛𝑒𝑚𝑒𝑛𝑡 = is the extent to which the alignment points are minimised. with

𝑅𝑀𝑎𝑙𝑖𝑔𝑛𝑒𝑚𝑒𝑛𝑡 =


1, if 𝑛 = 1

1 − 𝑛𝑣𝑎𝑝+𝑛𝑛𝑎𝑝
2𝑛 , Otherwise

𝑅𝑀𝑠𝑝𝑎𝑐𝑖𝑛𝑔 = is the extent to which the alignment points are consistently spaced with

𝑅𝑀𝑠𝑝𝑎𝑐𝑖𝑛𝑔 =


1, if 𝑛 = 1

1 − 𝑛𝑠𝑝𝑎𝑐𝑖𝑛𝑔−1
2(𝑛−1) , Otherwise

𝑛𝑣𝑎𝑝 = Number of vertical alignments points
𝑛𝑛𝑎𝑝 = Number of horizontal alignments points
𝑛𝑠𝑝𝑎𝑐𝑖𝑛𝑔 = the number of distinct distances between column and row starting points
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n = the number of objects on the frame.

4- Homogeneity metric

HM =
𝑊

𝑊𝑚𝑎𝑥

∈ [0, 1] (8)

W = is the number of different ways a group of n objects can be arranged for the four quadrants
𝑛 𝑗 = Number of objects in a quadrant j .

W = 𝑛!
𝑛𝑈𝐿 !𝑛𝑈𝑅 !𝑛𝐿𝐿 !𝑛𝐿𝑅 !

𝑛 = Number of objects on the frame
𝑛𝑈𝐿 = Number of objects in upper-left
𝑛𝑈𝑅 = Number of objects in upper-right
𝑛𝐿𝐿= Number of objects in lower-left
𝑛𝐿𝑅= Number of objects in lower-right
W = is maximum when the n objects are evenly allocated to the various quadrants of the screen.
𝑊𝑚𝑎𝑥 = 𝑛!

( 𝑛4 !)4

5- Economy metric

Ecm =
1

𝑛𝑠𝑖𝑧𝑒
∈ [0, 1] (9)

𝑛𝑠𝑖𝑧𝑒 = Number of sizes of different components.

6- Simplicity metric

Smpl =
3

𝑛𝑣𝑎𝑝 + 𝑛ℎ𝑎𝑝 + 𝑛
∈ [0, 1] (10)

𝑛𝑣𝑎𝑝 = Number of vertical alignments points
𝑛ℎ𝑎𝑝 = Number of horizontal alignments points
𝑛 = Number of objects in a UI.

7- Balance metric

BM = 1 − | 𝐵𝑀𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 | + | 𝐵𝑀ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 |
2

∈ [0, 1] (11)

𝐵𝑀𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 =
𝑤𝐿−𝑤𝑅

𝑚𝑎𝑥 ( |𝑤𝐿 |, |𝑤𝑅 |)

𝐵𝑀ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑎𝑡𝑙 =
𝑤𝑇 −𝑤𝐵

𝑚𝑎𝑥 ( |𝑤𝑇 |, |𝑤𝐵 |)

𝑤 𝑗 =
∑𝑛 𝑗

𝑖
𝑎𝑖 𝑗 ∗ 𝑑𝑖 𝑗

𝑎𝑖 𝑗 = Area occupied by object i on side j
𝑑𝑖 𝑗 = Distance between object i and the frame
where j ∈ {L,R,T,B}

8- Cohesion metric

CM =
|𝐶𝑀𝑓 𝑙 | + |𝐶𝑀𝑙𝑜 |

2
∈ [0, 1] (12)
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𝐶𝑀𝑓 𝑙 = is a relative measure of the ratios of the layout and screen .

with: 𝐶𝑀𝑓 𝑙 =


𝑡𝑓 𝑙 , if 𝑡𝑓 𝑙 ≤ 1

1
𝑡𝑓 𝑙

, Otherwise

with:
𝑡𝑓 𝑙 =

ℎ𝑙𝑎𝑦𝑜𝑢𝑡 /𝑏𝑙𝑎𝑦𝑜𝑢𝑡
ℎ𝑓 𝑟𝑎𝑚𝑒/𝑏𝑓 𝑟𝑎𝑚𝑒

ℎ𝑙𝑎𝑦𝑜𝑢𝑡 = The height of the layout
𝑏𝑙𝑎𝑦𝑜𝑢𝑡 = the width of the layout
ℎ𝑓 𝑟𝑎𝑚𝑒 = The height of the frame
𝑏 𝑓 𝑟𝑎𝑚𝑒 = The width of the frame
𝐶𝑀𝑙𝑜 = is a relative measure of the ratios of the objects and layout.
with:
𝐶𝑀𝑙𝑜 =

∑𝑛
𝑖 𝑓𝑖
𝑛

with:

𝑓𝑖 =


𝑡𝑖 , if 𝑡𝑖 ≤ 1

1
𝑡𝑖
, Otherwise

with:
𝑡𝑖 =

ℎ𝑖/𝑏𝑖
ℎ𝑙𝑎𝑦𝑜𝑢𝑡 /𝑏𝑙𝑎𝑦𝑜𝑢𝑡 𝑏𝑖 = Width of object i/

ℎ𝑖 = Height of object i.
n = Number of object on the frame.

9- Layout Uniformity metric

LU = 100 ∗ (1 − (𝑁ℎ + 𝑁𝑤 + 𝑁𝑡 + 𝑁𝑙 + 𝑁𝑏 + 𝑁𝑟 ) −𝑀

6𝑁 −𝑀
) ∈ [0, 1] (13)

𝑀 = 2 + 2[2
√
𝑁 ]

N = Number of objects in a UI.
M = Adjustment number for the minimum number of possible alignments and sizes that make the
value of LU ranges from 0 to 100.
𝑁ℎ =Number of different heights.
𝑁𝑤 =Number of different widths.
𝑁𝑡 =Number of different Top edge alignment.
𝑁𝑙 =Number of different Left edge alignment.
𝑁𝑏 =Number of different Bottom edge alignment.
𝑁𝑟 =Number of different Right edge alignment.

10- Unity metric

Unt =
|𝑈𝑀𝑓 𝑜𝑟𝑚 | + |𝑈𝑀𝑠𝑝𝑎𝑐𝑒 |

2
∈ [0, 1] (14)

𝑈𝑀𝑓 𝑜𝑟𝑚 = is the extent to which the objects are related in size and shape. (we have excluded the
color variable which is independent of the shape and size, and divided the formula by 2. )
𝑈𝑀𝑓 𝑜𝑟𝑚=1- 𝑛𝑠𝑖𝑧𝑒+𝑛𝑠ℎ𝑎𝑝𝑒−2

2 𝑈𝑀𝑠𝑝𝑎𝑐𝑒 = is a relative measure of the space between widgets and that of
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the margins.
𝑈𝑀𝑠𝑝𝑎𝑐𝑒=1-

𝑎𝑙𝑎𝑦𝑜𝑢𝑡−
∑𝑛

𝑖 𝑎𝑖

𝑎𝑓 𝑟𝑎𝑚𝑒−
∑𝑛

𝑖 𝑎𝑖

𝑎𝑖 , 𝑎𝑙𝑎𝑦𝑜𝑢𝑡 , and 𝑎𝑓 𝑟𝑎𝑚𝑒 are the areas of object i, the layout, and the frame, respectively; 𝑛𝑠𝑖𝑧𝑒 and
𝑛𝑠ℎ𝑎𝑝𝑒 are the numbers of sizes and shapes used, respectively; and n is the number of objects on
the frame.

11- Integrality metric

Intg = 1 − (0.5[𝑛𝑠𝑖𝑧𝑒 − 1
𝑛

+ 𝑠𝑠𝑐 +
∑
𝑖𝑛𝑎𝑖

2𝑎𝑀𝑈𝐼

]) ∈ [0, 1] (15)

𝑛𝑠𝑖𝑧𝑒 the number of different sizes of objects used by the interface. n: the number of objects. 𝑎𝑀𝑈𝐼

the area of the mobile interface. 𝑎𝑠𝑐 the area of the screen. 𝑎𝑖 the area of the interactive object i.

12- Grouping metric

Grp = (0.85𝑓 ) ∗𝑈𝑀𝑠𝑝𝑎𝑐𝑒 + (0.15𝑓 ) ∗𝐴𝐿 ∈ [0, 1] (16)
𝑈𝑀𝑠𝑝𝑎𝑐𝑒 = 1 – (𝑎𝐿𝑎𝑦𝑜𝑢𝑡 – sumOfAreas / 𝑎𝐹𝑟𝑎𝑚𝑒 – sumOfAreas)

𝐴𝐿 =𝑚𝑖𝑛(1, (4 ∗ 𝑁𝑖 − (𝑛𝐻𝑎𝑝 ∗ 𝑛𝑉𝑎𝑝/𝑁𝑖))/(4 ∗ 𝑁𝑖 − 4)) 𝑎𝐿𝑎𝑦𝑜𝑢𝑡 is the area of the layout;
sumOf Areas is the sum of the areas of objects;
𝑎𝐹𝑟𝑎𝑚𝑒 is the area of the frame;
Ni is the number of objects of type i;
nHap and nVap are the number of horizontal alignment points and the number of vertical alignment
points, respectively.

13- Nb-Elements metric
NB =

∑
𝑖𝑛𝑏𝑊𝑖𝑑𝑔𝑒𝑡𝑠 ∈ [0, 1] (17)

14- Complexity metric

Cmpl =
𝐷𝑠𝑡 + 𝑆𝑄𝑀 + 𝑅𝑔𝑙 +𝐻𝑀 + 𝐸𝑐𝑚 + 𝑆𝑚𝑝𝑙 + 𝐵𝑀 +𝐶𝑀 + 𝐿𝑈 +𝑈𝑛𝑡 + 𝐼𝑛𝑡𝑔 +𝐺𝑟𝑝 +𝐶𝑙𝑎𝑟𝑖𝑡𝑦 + 𝑁𝐵

14
∈ [0, 1] (18)
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