
Empirical Software Engineering (2025) 30:106
https://doi.org/10.1007/s10664-025-10654-w

Towards understanding code review practices
for infrastructure-as-code: An empirical study on OpenStack
projects

Narjes Bessghaier1 · Ali Ouni1 ·Mohammed Sayagh1 ·Moataz Chouchen1 ·
Mohamed Wiem Mkaouer2

Accepted: 30 March 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract
Infrastructure-as-code (IaC) is a widely used practice to automate the creation, provisioning,
orchestration, and configuration of infrastructures (such as networks, databases, and services).
IaC allows the use of specification files in the form of code to manage the infrastructure.
Practitioners can apply quality assurance best practices like code review to evolve IaC artifacts
like any other software system. Code review (CR) is a common practice in which developers
(i.e., reviewers) review code changes submitted by their peers to fix errors and ensure that the
code adheres to standards. Previous studies have shown that MCR can improve the overall
quality of the code, and that MCR practices may vary depending on the code under review.
Yet, little is known about how MCR practices are used in the context of IaC compared to
Non-IaC code. While Non-IaC focuses on implementing system components, IaC translates
these functional requirements into configuration code that defines infrastructure behavior,
highlighting the need to explore their distinct review practices. This paper presents the first
empirical study to investigate how practitioners perform code reviews for IaC code changes.
Using a dataset of over 300k code reviews from theOpenStack ecosystem, we found that both
IaC andNon-IaC code changes take a comparablemerge time.However, IaC developersmake
1.82 times more churn, while reviewers exchange 1.1 times more messages when reviewing
IaC-related code changes. We further examined the contribution of experienced reviewers
in reviewing IaC code changes. Our findings reveal that the top 5% of reviewers participate
in 44% to 75% of IaC code changes, indicating that dedicated reviewers are assigned to
review IaC code changes in OpenStack. Finally, to gain a better understanding of the factors
influencing reviewers in the evaluation of IaC code changes,we conducted a rigorous thematic
analysis on a representative sample of IaC code changes. We created a checklist with seven
main topics and 38 sub-topics through a thematic analysis. To validate our checklist, we
surveyed nine developers amongst the most active OpenStack reviewers in IaC code changes.
This approach strengthens the reliability of our findings and adds empirical support to the
identified checklist. This latter can be useful as a foundation of IaC guidelines for developers
along the IaC code change development and review process to check the quality of their IaC
code changes. In conclusion, we emphasize the importance of recognizing the non-trivial
nature of the IaC code change review. We argue for increased attention from researchers

Communicated by: Jeffrey C. Carver

Extended author information available on the last page of the article

0123456789().: V,-vol 123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 2 of 52 Empirical Software Engineering (2025) 30:106

to explore other dimensions of IaC code changes, recognizing that these are indispensable
practices for ensuring the robustness of software systems infrastructure.

Keywords Infrastructure-as-code · Code review · Code changes · Thematic analysis

1 Introduction

Infrastructure-as-Code (IaC) is an emerging practice to continuously configure software
systems infrastructure, such as installing packages, creating user profiles, managing permis-
sions, and installing services (Redhat 2022; Jiang and Adams 2015). IaC is supported by
multiple tools, such as Puppet (Turnbull and McCune 2011), Chef (Taylor and Vargo 2014),
Ansible (Hochstein and Moser 2017), and Terraform (Brikman 2019), each offering differ-
ent provisioning and customization capabilities. These IaC tools enable practitioners to use
machine-readable specification files to manage infrastructure in the same way as software
application code (Guerriero et al. 2019). By using IaC, practitioners can version control
their infrastructure-related code and benefit from development tools and practices that have
improved the efficiency of software development processes (Rahman et al. 2019). That is,
IaC adoption has grown in modern software projects, particularly in both commercial and
open-source projects.1 Recently, several companies, including IBM2 and Microsoft,3 started
to adopt the IaC technology into their development cycles to set up their infrastructures.

While IaC brings several advantages, it also comes with several challenges. Using various
IaC tools can lead to an increased code complexity as it involvesmanagingmany infrastructure
components and dependencies (Moris 2021; Guerriero et al. 2019; Kula et al. 2018). As
stated by Gene et al. ”Infrastructure as Code practices have evolved from managing servers
to managing complete stacks, but this new power comes at the cost of complexity” (Kim et al.
2016; Moris 2021). Furthermore, in the constantly evolving nature of IaC code to configure
and scale infrastructures, misconfiguration issues often emerge and can have a widespread
impact (Rahman et al. 2020). Hence, several projects use quality assurance practices, such
as code review, to maintain the quality of IaC code changes similar to any other software
artifacts. Code review is a common quality assurance practice that consists of manually
inspecting code to identify potential quality issues and ensure the adherence of the code to
the best practices (Bacchelli and Bird 2013; Sadowski et al. 2018).

Several studies have investigated code review practices in source code (Bacchelli and Bird
2013; Sadowski et al. 2018; McIntosh et al. 2016; AlOmar et al. 2022; Coelho et al. 2021).
However, little is known about IaC code review practices and challenges. Unlike coding
with traditional programming languages, IaC relies on machine-readable definition files to
code provisioning and deployment processes instead of doing so manually. We speculate that
reviewing IaC-related code changes have distinct characteristics and challenges than Non-
IaC-related code changes. This distinction primarily arises from the pivotal role of IaC code,
which can significantly influence the overall system infrastructure by introducing changes
to interconnected components that must function harmoniously and seamlessly (Bessghaier
et al. 2023). Furthermore, the integration of various IaC technologies for managing the sys-
tem’s infrastructure introduces further complexity, resulting in the development of diverse

1 https://octoverse.github.com
2 https://www.ibm.com/cloud/learn/infrastructure-as-code
3 https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native/infrastructure-as-code

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 3 of 52 106

IaC artifacts using different paradigms.4 While code review practices for IaC may share
common aspects as general-purpose programming languages (GPLs), such as ensuring code
quality, identifying bugs, and improving maintainability, there are several key differences
due to the nature and purpose of IaC compared to production and test code. IaC is not tradi-
tional code but rather configuration code that defines, provisions, and manages infrastructure
including some factors that are not present in GPL. IaC focuses on translating operational
requirements into configuration scripts that define infrastructure behaviour. Developers must
ensure different aspects such as correctness in configurations, idempotency, security best
practices, resource optimization, and compatibility with the diverse environments (e.g., stag-
ing, production) (Bessghaier et al. 2023; Rahman and Parnin 2023). In contrast, GPL code
review focuses on business logics, source code performance, maintainability, and adherence
to software design principles. Second, errors and defects in IaC can lead to critical infras-
tructure failures, such as downtime, security breaches, or resource misallocation, affecting
the stability and reliability of the whole software system (Xu and Zhou 2015). GPL errors,
while also impactful, are found to impact different aspects of the systems such as security,
performance, etc (Ray et al. 2014). Third, IaC requires detailed and up-to-date documentation
of infrastructure setup, dependencies, and configurations that link different components as
well as external providers. This differs from GPL code, where documentation often centres
on API usage and code logics. Finally, the growing reliance on IaC makes understanding its
code review practices crucial to improving software infrastructure reliability. Hence, the par-
ticularity of IaC code may trigger different challenges for developers that we aim to explore
and understand in this paper.

This motivates the investigation of the IaC code review effort and the type of reviewers
involved with the IaC code review. By investigating IaC code changes, we can potentially
advance the understanding of IaC artifacts to improve IaC development practices. Under-
standing the review practices used in IaC code changes can help managers more effectively
plan for these reviews and allow developers to improve the quality of their IaC code changes
by following best practices.

In this paper, we aim to understand the review process for IaC scripts. In particular, we
conduct a three-fold empirical study to (1) quantitatively compare code reviewattributes (such
as duration, number of reviewers, code churn, and number of revisions) adopted for IaC code
changes (where at least one IaC file is included in the change) to that of Non-IaC code changes
(where no IaC file is included in the change) using the Wilcoxon rank-sum non-parametric
test (Conover 1998) andCliff delta (Cliff 1993) to examine the attribute’s statistical difference,
(2) examine the contribution of reviewers concerning IaC and Non-IaC code changes, and
(3) qualitatively identify the criteria that developers discuss before accepting an IaC code
change by conducting a thematic analysis (Glaser and Strauss 1967; AlOmar et al. 2024)
and validate the checklist through surveying OpenStack reviewers. We conduct our study
on the OpenStack ecosystem, which leverages various IaC tools to configure and deploy
infrastructures. Specifically, OpenStack has followed a six-month release cycle (OpenStack
2019) with three phases (development, release-candidate, and post-release) since the early
2012 release (Diablo5). This provided an opportunity to longitudinally examine how the
code review attributes of IaC differ across the release cycle compared to Non-IaC code by
collecting a dataset of over 300k merged code changes. This provides a comprehensive view
of the effort devoted to reviewing IaC code changes, particularly throughout the different

4 https://betterstack.com/community/comparisons/chef-vs-puppet-vs-ansible/
5 https://www.openstack.org/blog/openstack-announces-diablo-release/

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 4 of 52 Empirical Software Engineering (2025) 30:106

phases of the OpenStack release cycle. It reveals the types of issues that IaC developers
commonly encounter in every phase of the cycle. This analysis helps highlight key challenges
and patterns in the IaC review process, contributing to a deeper understanding of the overall
effort involved. Our study is guided by the following research questions:

– RQ1: How often do developers review IaC code changes? Our findings uncovered
that IaC code changes, representing 10% of all code changes, are submitted for review
in the three phases of the OpenStack release cycle. Additionally, we found that IaC code
changes follow the same evolution pattern as Non-IaC code changes in the 12 OpenStack
releases.

– RQ2: How different are code review practices when reviewing IaC and Non-IaC
code changes? We found that during the development phase, IaC code changes take
longer to be reviewed than Non-IaC code changes (an average of 1.2 times longer) and
involve more reviewers (a median of five for IaC and four for Non-IaC) with a negligible
effect size. However, we also observe that during the release-candidate and post-release
phases, the IaC code changes related to bugs are reviewed at a faster pace compared to
code changes related to Non-IaC bugs, even though the number of assigned reviewers is
the same for both code changes (a median of three in the release-candidate phase and a
median of four in the post-release phase). Additionally, we found that during an IaC code
change, reviewers tend to exchange a higher number of messages, particularly during the
development phase (a median of 15 for IaC compared to a median of 13 for Non-IaC)
and the release-candidate phase (a median of nine for IaC compared to a median of eight
for Non-IaC) with a negligible effect size.

– RQ3: What is the contribution of reviewers working on IaC code changes? Our
observations show that IaC reviewers are contributing more to the review process of
OpenStack compared to those working only on Non-IaC code changes. Furthermore, we
found that the top-5% of reviewers participate in a minimum of 301 IaC code changes
(i.e., 44% of the changes) to a maximum of 693 (i.e., 75% of the changes) code changes
across the 12 OpenStack releases. Furthermore, we found that the top 5% of reviewers
are authoring more IaC code changes (i.e., 60% of the changes) than the remaining
95% of reviewers (i.e., 40% of the changes). This suggests that the developers who are
most active in reviewing IaC code changes are also heavily involved in developing those
changes.

– RQ4: What criteria are considered during the code review to merge IaC code
changes? Through a manual analysis of a representative sample of 379 merged IaC
code changes, and a survey with nine OpenStack most active reviewers, we identified
and validated seven topics that were discussed by the reviewers and code changes own-
ers, covering a total of 38 specific issues related to IaC coding, such as “Set deprecated
parameters to UNDEF”, which ensures that deprecated options no longer have a value.
These issues can constitute a code review checklist to ensure proper coding of IaC code
changes.

The results of our empirical study advocate that the review effort of IaC code changes, in
terms of code review attributes, is comparable to that ofNon-IaC code changes. Consequently,
we advocate researchers and developers to be more aware of the importance of reviewing
IaC scripts. It is noteworthy that the existing literature lacks comprehensive studies delving
into IaC code review, and to the best of our knowledge, there are no established quality
models or guidelines specific to IaC. Furthermore, understanding the process of code review
and the specific criteria used to evaluate IaC code changes is important for both developers

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 5 of 52 106

and researchers, as it can help ensure that code changes are of high quality and conform
to standards and best practices. Code review is a critical step in the development process.
It is important to ensure that it is done effectively, especially for code changes related to
infrastructure, as mistakes or vulnerabilities in IaC code can have serious consequences.
Therefore, following best practices when writing code changes in IaC can help increase the
chances that the code will be accepted and merged. Some best practices for writing IaC code
include adhering to the DSL annotations and built-in functions, commenting code to explain
its purpose, and testing the IaC code changes before submitting them for review. Adhering
to these best practices can make it easier for reviewers to understand and evaluate the code.
It is also important for developers to be responsive to feedback from reviewers and to make
any necessary changes or corrections on time to avoid delays in the code review process.

Data Availability Statement The datasets generated during and/or analyzed during the
current study and the scripts are available in the following GitHub repository, https://github.
com/stilab-ets/iacreview.

Paper organization The rest of the paper is organized as follows. Section 2 presents back-
ground on IaC tools and code review and provides a motivating example. Section 3 describes
our study design, while Section 4 presents and discusses the quantitative and qualitative
analysis results. Section 5 highlights the implications of our study. Section 6 discusses our
threats to validity. Section 7 reflects on some studies on the practices of IaC and code review.
Finally, we conclude the paper and discuss our future research directions in section 8.

2 Background andMotivation

In this section, we first provide an overview of infrastructure-as-code (IaC) concepts, code
review, and the OpenStack release cycle. We then motivate our study goals with a real IaC
code change example.

2.1 Background

2.1.1 Infrastructure-as-code

Infrastructure-as-code (IaC) allows the automatic management and provisioning of infras-
tructures usingmachine-readable specification files. One of themain features of IaC is the use
of code to describe the infrastructure, as well as the ability to version control and automate
the configuration of the infrastructure. IaC often includes tools for deployment, provision-
ing, and management, such as Puppet (Turnbull and McCune 2011), Chef (Taylor and Vargo
2014), Ansible (Hochstein and Moser 2017), and Terraform (Brikman 2019). Several tools
are available for use with IaC, and each can be used for specific purposes in infrastructure
configuration. For example, Terraform can be used to create a cloud environment or set up a
firewall. In contrast, tools like Ansible or Puppet can be used to install resources such as a
web server onto the configured infrastructure. Among the IaC tools, Puppet and Ansible are
particularly popular and widely used by many companies (such as Atlassian6 and Intel7).

6 https://www.atlassian.com/microservices/cloud-computing/infrastructure-as-code
7 https://www.intel.la/content/www/xl/es/financial-services-it/cloud/building-a-unified-pipeline.html

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 6 of 52 Empirical Software Engineering (2025) 30:106

We provide, in Listings 1 and 2, snippets of configuration tasks written in Puppet and
Ansible, respectively. In the Puppet code, a domain-specific language is employed to define
and manage four resources on the host server. Specifically, Puppet ensures the presence of
package1, creates a user named user1, and generates a configuration file(conf_file)
containing the content “hello” and ensures that the service1 service is running. On the
contrary, in the Ansible code, YAML syntax is utilized to articulate equivalent configuration
tasks. For instance, theAptmodule8 is used tomanage packages and ensures thatpackage1
is present. The Copy module9 is used to ensure that the file at “src/config/conf_file” exists
and has the content “hello”. TheUsermodule10 is employed tomanage user accounts. In this
example, it ensures that the user named user1 is present and has a home directory managed.
Finally, the Systemd module11 is used to manage services and ensures that service1 is
running and enabled.

Listing 1 Puppet code

1 Package {’package1 ’:
2 ensure => present ,}
3 File {’src/config/conf_file ’:
4 ensure => file ,
5 content => ’hello’}
6 User {’user1’:
7 ensure => present ,
8 managehome => true}
9 Service {’service1 ’:

10 ensure => running ,
11 enable => true}

Listing 2 Ansible code

1 - name: set ’package1 ’
2 apt:
3 name: package1
4 state: present
5 - name: create ’src/config/conf_file ’
6 copy:
7 content: ’hello’
8 dest: src/config/conf_file
9 - name: set ’user1’

10 user:
11 name: user1
12 state: present
13 createhome: yes
14 - name: set ’service1 ’
15 systemd:
16 name: service1
17 state: started
18 enabled: yes

While IaC brings many benefits, there are also challenges to consider when adopting
it Guerriero et al. (2019). One major challenge is the need for developers to learn new skills
and adapt to new workflow processes. As pointed out by Guerriero et al. (2019), we quote:

8 https://docs.ansible.com/ansible/latest/collections/ansible/builtin/apt_module.html
9 https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html
10 https://docs.ansible.com/ansible/latest/collections/ansible/builtin/user_module.html
11 https://docs.ansible.com/ansible/latest/collections/ansible/builtin/systemd_module.html

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 7 of 52 106

“infrastructure triaging involves many different formats which are often obscure to most and
need specialized personnel.”; i.e., IaC tools come in different programming languages and
paradigms that may not be easily interpreted by developers who lack expertise in this domain.
There may also be technical challenges with integrating IaC tools with existing systems, so it
is important for developers to carefully consider how IaC will fit into their existing workflow
and to be mindful of any potential vulnerabilities that may be introduced (Guerriero et al.
2019).

2.1.2 Code Review

Developers often use various quality assurance practices, such as code review (Bacchelli and
Bird 2013), to maintain the quality of their code. Code review is the process of manually
reviewing code changes to fix errors and ensure that the code meets certain standards (McIn-
tosh et al. 2016; Baum et al. 2016; Peruma et al. 2020; AlOmar et al. 2022; Alrubaye et al.
2019). Modern Code review (MCR) is a tool-based approach that uses platforms like Ger-
rit12 to facilitate an interactive and asynchronous code review process (Bacchelli and Bird
2013; Davila and Nunes 2021; Thongtanunam et al. 2017). During MCR, code changes are
discussed between the owner of the change and expert developers to improve the code and
determine whether it should be merged or abandoned (Yang et al. 2016). The code review
process typically includes the following steps:

1. Code change submission: The author prepares and submits a code change (a set of code
changes) to the code review tool;

2. Reviewers’ invitations: After the code change is submitted, reviewers are invited to pro-
vide feedback. Reviewers can be invited by the author, recommended by a tool based on
their expertise, or join the review voluntarily;13

3. Code change review: The reviewer(s) carefully examine the code change and provide
comments, voting on whether the code change requires further revisions or is ready to
be merged;

4. Address reviewers’ feedback: The author makes revisions to the code change based on
the reviewers’ comments. There may be multiple versions of the originally submitted
code change (called “patch-sets”) during this process;

5. Code change status update: Once the review process is complete, a committer (usually
an experienced developer) updates the status of the code change based on the outcome
of the review process, either merging the code change or abandoning it.

2.1.3 OpenStack Release Cycle

In our study,we focus on theOpenStack ecosystem,which is awidely-used open-source cloud
computing platform. OpenStack is a set of software tools for building and managing cloud
computing infrastructures. It operates by orchestrating compute, storage, and networking
resources through a set of interrelated services. Additionally, OpenStack employs dedicated
IaC projects to automate the deployment and management of the services. Furthermore,
OpenStack has a complex interconnected nature (involving many contributors), its incorpo-
ration of new configuration technologies, and its active development cycle (six-month release

12 https://www.gerritcodereview.com
13 https://docs.openstack.org/contributors/en_GB/code-and-documentation/using-gerrit.html

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 8 of 52 Empirical Software Engineering (2025) 30:106

cycle), which has been extensively used in several studies in software engineering (AlOmar
et al. 2022; Teixeira and Karsten 2019; Han et al. 2021; Thongtanunam et al. 2017; Li
et al. 2022). Firstly, by examining OpenStack, we aim to investigate the IaC code issues
faced by developers within a well-engineered and mature ecosystem. OpenStack’s complex-
ity and sophistication offer a rich source of data on the challenges and best practices in IaC
development, allowing us to derive meaningful and actionable insights. Secondly, focusing
on OpenStack helps us avoid the noise and inconsistencies that might arise from manu-
ally studying disparate IaC-based projects. OpenStack’s cohesive and interconnected nature
ensures that our findings are relevant and generalizable. This minimizes the risk of conclud-
ing projects that do not accurately reflect common practices or issues in IaC development.
Thirdly, OpenStack offers an opportunity to study the evolution of the IaC code review pro-
cess over time. The continuous development and integration cycles within OpenStack enable
us to track and analyze how IaC practices evolve and how review processes adapt. This lon-
gitudinal perspective is crucial for understanding the dynamics of IaC code review and its
role in the software development lifecycle. Additionally, an OpenStack release goes through
three main phases (development, release-candidate, and post-release) (Teixeira and Karsten
2019; OpenStack 2021), which allows us to longitudinally compare IaC and Non-IaC code
changes throughout the evolution of the release cycle and see how IaC code changes differ
from one phase to the next. Our goal is to gain a better understanding of IaC code review
within the context of a complex ecosystem throughout the different stages of the release cycle.
Firstly, it helps us understand the effort devoted to IaC code changes by revealing when the
most effort is expended and why, providing insights into the workload associated with IaC
code changes during each phase of the release cycle. Secondly, the release cycle provides
a chronological framework to analyze the review process, identifying critical periods when
review efforts peak, whether during the development phase for adding new features, during
the testing phase of the release cycle, or during the post-release phase for fixing defects.
Finally, the release cycle helps us map the types of issues encountered during code reviews
to specific phases. This phased approach offers a nuanced understanding of the challenges
IaC developers face along a project release cycle. As shown in Fig. 1, an OpenStack release
cycle consists of the following three phases:

1. Development: The first phase of an OpenStack release cycle is the development period,
which lasts for at least five months and includes activities such as planning, implemen-
tation, testing, and bug fixes (OpenStack 2016a, b). After three months, the development
phase focuses on bug-fixing and feature freeze. This means that the development efforts

Fig. 1 An overview of the OpenStack release cycle

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 9 of 52 106

become centered on fixing bugs and stabilizing the system, and only changes that fix
bugs and do not introduce new features can be merged into the master branch (Open-
Stack 2021).

2. Release-candidate: Once all identified critical bugs have been fixed, developers create
a stable branch called “RC1” from the current state of the master branch, which will
hold the first release candidate of the OpenStack release (OpenStack 2016a). During
this phase, which is typically one month long (OpenStack 2019), only critical bug fixes
and exceptional features (known as Feature Freeze Exceptions or FFEs) are allowed to
be merged into the stable branch (OpenStack 2021). The RC1 may be used as is, to
be released as the final OpenStack release unless new critical bugs are discovered. If
new critical bugs are found, they must be merged into the master branch before being
included in the stable branch, and a new RC2 is created (OpenStack 2022, 2016b). This
process is repeated until all critical bugs have been fixed, and the final release date is
reached (OpenStack 2021). Non-critical bugs may be documented as “known issues” in
the release notes and addressed later, to avoid disruptions (Teixeira and Karsten 2019).
On the final release date, the final RC from each project is collected and integrated to
create the new OpenStack release for the cycle (OpenStack 2021).

3. Post-release: After the OpenStack release is produced, the post-release phase begins.
During this phase, maintenance activities are carried out on the project’s final RC to fix
known bugs and address any new bugs that are discovered after the projects have been
deployed by clients (OpenStack 2022, 2016a).

2.2 Motivating Example

We provide in Fig. 2 an example of a code review (ID:303562)14 from the tripleo-heat-
templates project15 of OpenStack using the Gerrit code review platform. The code change
includes 10 existing files with two newly added files (“services/neutron-l3.yaml” and
“pacemaker/neutron-l3.yaml”). The code change was submitted by “Dan Prince” to be
reviewed by eight reviewers, along with the CI server (“Jenkins”). The code change per-
tains to an IaC-related code change, which adds a new puppet service. The review process
took roughly 40 days and underwent 30 revisions before being merged. During the review
process, the reviewers exchanged eight messages and left 13 inline comments to suggest
improvements to the code. Following the reviewer’s directions, overall, 122 lines of code
were added to or removed from the modified files. The reviewers discussed basic syntax
issues (such as the leading comma “-” at the beginning of a line), wrong parameters values
(such as, neutron::agents::l3::enabled: false and
neutron::agents::l3::manage_service: false), and misplaced code (such
as, the parameter
“OS::TripleO::Services::NeutronL3Agent:OS::Heat::None” should be
under the “resource_registry:” section and not the “parameter_defaults:”
section), which the reviewer “James Slagle” explicitly complained about it by saying:
“shouldn’t this be under the resource_registry and not parameter_defaults?”. Furthermore,
the reviewers pointed out that configuration parameters’ values should be updated if the cur-
rent code change gets merged before another code change, which presumably could lead to
configuration dependency issues if not done. Besides, a reviewer acknowledged a critical

14 https://review.opendev.org/c/openstack/tripleo-heat-templates/+/303562
15 https://github.com/openstack/tripleo-heat-templates

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 10 of 52 Empirical Software Engineering (2025) 30:106

Fig. 2 An example of a code review (ID:303562) from the Tripleo-heat-templates project of OpenStack using
Gerrit

oversight, stating that they did not realize or recall that certain configuration settings were
removed, as we quote “I was confused cos on the side of that you only added to a few services,
didn’t notice/remember that on the puppet-tripleo side you removed it for all the things”. This
highlights a common issue where developers sometimes lose track of modifications made
to the code or may not be aware of important configuration changes that need to take place.
Finally, the reviewers have voted a “+2” to accept the code change and merge it into the
code base. This example motivates the importance of comprehending the issues that review-
ers raise during IaC code changes, as well as examining whether experienced reviewers are
involved in these code change reviews.

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 11 of 52 106

Fig. 3 Empirical study overview

3 Empirical Study Design

Themain focus of our study is to investigate code review practices in the context of IaC. To do
so, we first quantitatively analyze IaC code changes using various code review attributes, such
as the number of revisions, the number of reviewers, the review duration, etc. Furthermore,
we dig deeper to examine the contribution of reviewers to the IaC code review practice. Then,
we qualitatively examine the specific code issues that reviewers discuss when evaluating IaC
code changes. As depicted in Fig. 3, our study consists of the data collection, data preparation,
and data analysis steps.

3.1 Step 1: Data Collection

We mined the code review data using the REST API16 that Gerrit provides to query the
code changes from opendev code review hosting platform,17 which returns the results in
JSON format. We crawled all closed code changes with the status of either “Merged” or
“Abandoned”. We collected a total of 554,672 code changes, from which we finally selected
365,407 merged code reviews. Overall, we mined the code reviews of 19 OpenStack releases
(fromDiablo (OpenStack 2011) to Victoria (OpenStack 2020)) having a code review lifetime
from 2011 to 2021.

3.2 Step 2: Data Preparation

In our study, we aim to perform a fine-grained analysis by breaking down each release cycle
into its three phases, i.e., (1) development, (2) release-candidate, and (3) post-release phases
(cf. Section 2.1.3). Hence, we analyze the collected code changes based on the cycle phase,
and thenwe identify and group the code changes related to IaC and other code (i.e., Non-IaC).

16 https://gerrit-review.googlesource.com/Documentation/rest-api.html
17 https://review.opendev.org/q/status:open+-is:wip

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 12 of 52 Empirical Software Engineering (2025) 30:106

3.2.1 Step 2.1: Categorize Code Changes by Cycle Phase

Since the beginning of the development of OpenStack in 2010, the project has not followed
a consistent release cycle. Some releases (such as Austin18 and Bexar19) came at irregular
intervals, ranging from three to five months. As a result of this analysis, we removed seven
OpenStack releases before 2015 (Diablo to Juno), where the release-candidate phase did not
follow the consistent pattern of one to two months, and we ended up with 12 releases left
(Kilo to Victoria).

To accurately determine the dates of the three phases of the 12 OpenStack releases, we
consider the OpenStack release deadline and the stable branch creation dates for each release.
The development phase of a release R(i) begins on the day after the last OpenStack release
deadline (R(i−1) +1) and ends on the day the stable branch of R(i) is created (OpenStack
2021). Any code changes merged into the master branch during this period belong to the
development phase. The release-candidate phase begins on the day the stable branch of
release R(i) is created and ends on the final release date of R(i). The post-release phase of
release R(i) starts the day after the release deadline (R(i) +1) and continues until the last code
review date is merged into the stable branch in our dataset. Any code changes merged into
the stable branch after the creation of the stable branch belong to either the release-candidate
or post-release phase, depending on the time they were merged. In Table 1, we show the
characteristics of the 12 studied OpenStack releases.

3.2.2 Step 2.2: Categorize Code Changes into IaC and Non-IaC

After classifying all code changes by phase, we need to distinguish IaC from Non-IaC code
changes. OpenStack uses Puppet and Ansible IaC tools, which have been extensively studied
in previous research (Sharma et al. 2016; Rahman et al. 2019; Van der Bent et al. 2018;
Opdebeeck et al. 2022; Dalla Palma et al. 2020). Puppet uses dedicated files with the “.pp”
extension to define all the resources that will be installed during deployment,20 while Ansible
defines its resources in YAML files under the “roles”, “tasks”, or “playbooks” folders.21 We
wrote custom scripts to identify all code changes that contain at least one of these two types
of IaC files. We ended up with IaC-related code changes accounting for 10% out of the total
number of merged studied code changes.

For example, in Fig. 4, we provide an example of an IaC-related code change.22 The code
change includes adding the developermode to the projectBifrost. Thus, a configuration option
called “developer_mode” is added to the source code python file cli.py23 responsible
for implementing Command-Line-Interface (CLI) commands for the Bifrost project. The
option is then defined in the Ansible file defaults/main.yaml24 where options defaults are
declared. Later, an Ansible task has been added to the Ansible IaC file tasks/main.yaml,25 so

18 https://releases.openstack.org/austin/index.html
19 https://releases.openstack.org/bexar/index.html
20 https://www.puppet.com/docs/puppet/5.5/lang_summary.html
21 https://docs.ansible.com/ansible/2.8/user_guide/playbooks_best_practices.html
22 https://review.opendev.org/c/openstack/bifrost/+/744233
23 https://github.com/openstack/bifrost/blob/master/bifrost/cli.py
24 https://github.com/openstack/bifrost/blob/master/playbooks/roles/bifrost-pip-install/defaults/main.yml
25 https://github.com/openstack/bifrost/blob/master/playbooks/roles/bifrost-pip-install/tasks/main.yml

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 13 of 52 106

Ta
bl
e
1

O
pe
nS

ta
ck

re
le
as
es

st
at
is
tic
s,
w
ith

(M
)
re
fe
rr
in
g
to

m
er
ge
d
co
de

ch
an
ge
s
an
d
(A

)
re
fe
rr
in
g
to

ab
an
do
ne
d
co
de

ch
an
ge
s
(C

C
)

#
R
el
ea
se

da
te

R
el
ea
se

D
ev
el
op
m
en
t

R
el
ea
se
-

ca
nd
id
at
e

Po
st
-

re
le
as
e

N
o.

C
C
(M

)

N
o.
C
C
(M

)
N
o.

C
C
(A

)
N
o.

C
C
(M

)
N
o.

C
C
(A

)
N
o.

C
C
(M

)
N
o.

C
C
(A

)
N
o.

Ia
C
C
C

N
o.

N
on
-I
aC

C
C

1
30

/0
4/
20

15
K
ilo

24
70

2
58

42
33

7
47

14
27

47
3

71
7

25
74

9

2
15

/1
0/
20

15
L
ib
er
ty

28
31

7
65

60
43

5
46

26
44

62
5

14
32

30
26

4

3
07

/0
4/
20

16
M
ita
ka

32
68

1
76

54
64

2
41

30
72

62
7

20
24

34
37

1

4
06

/1
0/
20

16
N
ew

to
n

37
65

0
94

66
94

4
86

40
08

76
3

37
61

38
84

1

5
22

/0
2/
20

17
O
ca
ta

26
15

1
62

73
89

5
36

50
26

76
4

29
00

29
17

2

6
30

/0
8/
20

17
Pi
ke

32
76

2
72

95
11

40
39

51
57

72
3

28
30

36
22

9

7
28

/0
2/
20

18
Q
ue
en
s

26
69

3
60

45
11

14
59

61
03

93
7

30
24

30
88

6

8
30

/0
8/
20

18
R
oc
ky

25
77

0
60

27
11

91
57

50
43

57
4

36
61

28
34

3

9
10

/0
4/
20

19
St
ei
n

24
36

1
61

21
94

8
25

39
54

47
2

31
62

26
10

1

10
16

/1
0/
20

19
T
ra
in

17
38

7
40

65
76

3
21

54
81

63
6

25
91

21
04

0

11
13

/0
5/
20

20
U
ss
ur
i

18
55

3
32

93
66

2
19

34
49

24
3

23
42

20
32

2

12
14

/1
0/
20

20
V
ic
to
ri
a

13
63

0
29

56
63

3
15

16
82

14
7

18
77

14
06

8

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 14 of 52 Empirical Software Engineering (2025) 30:106

Fig. 4 Example of an IaC-related code review (ID:744233) of the Bifrost project containing Non-IaC scripts

that the new option takes effect in the environment. Finally, a release notes file26 is added to
document the change.

3.3 Step 3: Data Analysis

To address our research questions, we conduct a mixed analysis with both quantitative and
qualitative methods.

3.3.1 Step 3.1: Quantitative Data Analysis

RQ1: How often do developers review IaC code changes? To answer RQ1, we count the
weekly number of IaC and Non-IaC code changes to visualize the evolution of code changes
in each phase along the release. Besides, given the limited release candidate phase time
frame of up to two months, we aim to identify any notable peaks in IaC code changes in the
weeks before the release date. Furthermore, we use the Spearman rank correlation between
IaC and Non-IaC code changes for each release, to determine whether there is a statistically
significant trend or pattern in the evolution of IaC and Non-IaC code changes over time and
how these two types of code evolve with each other within the context of our study. The
following are the intervals used to interpret the magnitude of the Spearman correlation:

– Negligible: between 0 and 0.20;
– Weak: between 0.21 and 0.40;
– Moderate: between 0.41 and 0.60;
– Strong: between 0.61 and 0.80;
– Very strong: between 0.81 and 1.

RQ2: How different are code review practices when reviewing IaC and Non-IaC
code changes? Then, to answer RQ2 and similarly to AlOmar et al. (2021), we compare the
code review practice for both IaC and Non-IaC code changes for all the releases combined
using 10 different code review attributes as described in Table 2. Subsequently, we compare
IaC and Non-IaC code changes for each phase (development, release-candidate, and post-
release) to discern how each phase’s particularity in code changes may impact the code
review attributes. These latter cover various aspects of the code review process, such as the
number of revisions, the number of changed files, the code churn, added and deleted lines

26 https://github.com/openstack/bifrost/blob/master/releasenotes/notes/developer-mode-
000e7a125642b9e1.yaml

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 15 of 52 106

Table 2 The 10 studied attributes of a code review process

Attributes Definition & Rationale

1 No. of revisions This attribute captures the committed changes required before a code change
can bemerged. High values of this attributemay suggest that it is challenging
to revise IaC code changes and that they often require multiple iterations
before being approved for merging. This information can provide insight
into the difficulty of reviewing and revising IaC code changes.

2 No. of files This attribute reflects the number of files that are modified together in a code
change that is being reviewed. A high number of changed files may indicate
that an IaC change has a broad impact on the codebase and may affect other
files. This information can be useful in understanding the scope of an IaC
code change and how it may impact the overall system.

3 Churn The churn measures the amount of code that is added or deleted in a code
change that is being reviewed. High churn values may suggest that an IaC
code change is more difficult to maintain and may require additional modi-
fications over time. This attribute may also indicate that significant changes
are being requested within the same code review. Understanding the churn
of IaC code changes can provide insight into the complexity and maintain-
ability of these changes.

4 Added lines This attribute captures the number of new lines of code added to a file
in a code change being reviewed. This attribute can provide information
on the extent to which a file has been modified as part of a code change.
Understanding the number of added lines in an IaC code change can help
gauge the change’s scope and impact.

5 Deleted lines This attribute captures the number of lines of code that are removed fromafile
in a code change being reviewed. Understanding the number of deleted lines
in an IaC code change can help assess the scope of the change, particularly in
terms of code simplification, refactoring, or removal of obsolete or redundant
code.

6 Description length The description length is an attribute of the number of words written in the
description of a code change being reviewed.A long descriptionmay suggest
that it is necessary to provide detailed information about the changes made
to fully describe an IaC code change. This attribute can provide insight into
the complexity of IaC code changes and the amount of information that is
needed to accurately convey the nature of the change.

7 No. of messages This attribute captures the number of messages that are exchanged between
reviewers and the owner of a code change being reviewed during the review
process. A high number ofmessagesmay indicate that reviewers are encoun-
tering challenges in reviewing or revising an IaC code change. This attribute
can provide insight into the difficulty of reviewing IaC code changes and
may help to identify areas where additional support or clarification may be
needed.

8 No. of inline
comments

This attribute captures the number of comments that reviewers includewithin
a changed code file to address specific issues. Inline comments are used to
provide specific guidance or clarification on the changes being made in a
code review. Understanding the number of inline comments in an IaC code
change can provide insight into the level of detail and focus that is being
applied during the review process. This metric is normalized by the number
of added and deleted lines.

9 Duration This attribute captures the amount of time that elapses between the submis-
sion of a code review and its merging. The duration of a code review can
provide insight into how long it takes for an IaC code change to be approved
and incorporated into the codebase. Understanding the duration of IaC code
reviews can help managers plan and prioritize their review process.

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 16 of 52 Empirical Software Engineering (2025) 30:106

Table 2 continued

Attributes Definition & Rationale

10 No. of reviewers This attribute captures the number of people who are involved in reviewing
a code change. A high number of reviewers indicates that IaC code changes
require more input or scrutiny before they can be approved. Understanding
the number of reviewers involved in reviewing IaC code changes can pro-
vide insight into the level of resources that may be required to review this
type of change and may help managers plan and allocate review resources
appropriately.

of code, the code change description length, the number of exchanged messages during the
review process, the number of inline comments, the code review duration and the number of
reviewers.

As we compare various review attributes for both IaC and Non-IaC code changes, we
need to assess, for each attribute, whether the variation is statistically significant. Therefore,
we apply the Wilcoxon rank-sum test (Cuzick 1985) and the Cliff’s Delta effect size (Cliff
1993). TheWilcoxon rank-sum test is a non-parametric statistical test that is used to compare
two independent groups, and we used it with a confidence level of 95% (p-value < 0.05).
The null hypothesis for this test is that there is no difference in the code review attributes
between IaC and Non-IaC code changes. Additionally, we perform corrections to our p-
values using the Bonferroni correction (Napierala 2012). Furthermore, we use Cliff’s Delta
non-parametric effect size to estimate the magnitude of differences between the IaC and
Non-IaC code changes for each attribute. The following are the categories used to interpret
the magnitude of the difference:

– Negligible: for | δ |< 0.147;
– Small: for 0.147 ≤| δ |< 0.33;
– Medium: for 0.33 ≤| δ |< 0.474;
– Large: for | δ |≥ 0.474.

RQ3:What is the contribution of reviewers working on IaC code changes? Finally, in
RQ3, we further complement our IaC code changes analysis by comparing the contribution
score of reviewers whose code changes incorporate IaC with those whose code changes do
not involve IaC following the approach of previous studies (Peruma et al. 2019; AlOmar et al.
2021). We use the number of reviewed and authored code changes as a proxy to measure
the reviewers’ contribution compared to all code changes up to each OpenStack release
date, allowing for comparability between all reviewers in a release. It is important to note
that the reviewers’ contribution, denotes how much reviewers are contributing to the review
and development of code changes. It is distinct from the code review attributes discussed in
RQ2, which encompass measures quantifying the effort involved in reviewing a code change,
including factors like churn, the number of reviewers, duration, etc.

To ensure a fair and consistent assessment of each reviewer’s contribution, we employ a
quantification approach that involves evaluating their contributions on a release-by-release
basis. As illustrated in Fig. 5, we have two reviewers A and B reviewing code changes
during three releases (R1, R2, and R3). The contribution of both reviewers in R1, R2, and
R3 is R1: {A=2}, R2: {A=3, B=2}, R3: {A=4, B=5}. Given the substantial
volume of over 300k code reviews, it becomes impractical to treat each review as a distinct
checkpoint. Therefore, by using release dates as checkpoints, we can effectively maintain a

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 17 of 52 106

Fig. 5 Reviewer’s contribution overtime

comprehensive evaluation and facilitate the comparability of each reviewer’s contributions
within the context of the OpenStack project’s development during the 12 studied releases.

In our dataset, as shown in Table 3, we have 301 reviewers who review at least one IaC
code change and 1,128 who review at least one Non-IaC code change. It is important to note
that we combined reviewers exclusively working on only IaC code changes with those who
review at least one IaC code change. This consolidation was deemed necessary due to the
negligible size of the former group, as presented in Table 3.

Formally, we define the Reviewer Contribution Score (RCS) of each reviewer (Ri) by
dividing their number of reviewed and authored code changes (CC) by the total number of
code changes up to each OpenStack release date (Vj) as defined in (1):

RCS(Ri , Vj) =
∑

(Number of reviewed CC,Number of authored CC)Ri

Total number of CC(Vj)

(1)

Then,we investigatewhether specific reviewers are significantly contributing to the review
of IaC code changes, or whether it is randomly distributed among reviewers. To do so, we
divide the reviewers into two groups for comparison. Similarly to AlOmar et al. (2021), the
first group consists of reviewers that fall within the top 5% based on their RCS scores (that

Table 3 Reviewer’s characteristics in the 12 studied, OpenStack releases code changes (referred to as “CC”)

Release At least
1 IaC CC

At least 1
Non-IaC
CC

Only IaC
CC

Only Non-IaC
CC

At least 1 IaC
and
1 Non-IaC CC

of distinct
Reviewers

Top-5%

Kilo 301 2,773 30 2,502 271 2,803 140

Liberty 502 3,060 49 2,607 453 3,109 155

Mitaka 641 3,223 55 2,637 586 3,278 164

Newton 641 3,260 61 2,680 580 3,321 166

Ocata 601 2,761 52 2,212 549 2,813 141

Pike 620 2,647 39 2,066 581 2,686 134

Queens 693 2,310 44 1,661 649 2,354 118

Rocky 632 2,148 46 1,562 586 2,194 110

Stein 628 1,989 57 1,418 571 2,046 102

Train 484 1,704 37 1,257 447 1,741 87

Ussuri 434 1,418 36 1,020 398 1,454 73

Victoria 344 1,128 31 815 313 1,159 58

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 18 of 52 Empirical Software Engineering (2025) 30:106

we denote as “top-5%”), and the second group contains the remaining 95% of reviewers. The
top-5% group ranges from 58 to 166, whereas the remaining reviewers range from 1,101 to
3,209 for the studied releases. It is worth mentioning that we remove the bots from the list
of reviewers by identifying the “tags”: [“SERVICE_USER”] from the “REVIEWER”
element in the JSON files of Gerrit.

3.3.2 Step 3.2: Qualitative Data Analysis

RQ4:What criteria are considered during the code review to merge IaC code changes?
To answer RQ4, we applied the thematic analysis technique based on the guidelines of Cruzes
and Dyba (2011) to create a taxonomy of the criteria that reviewers check while reviewing
IaC code changes. This approach involves analyzing data to identify and develop themes
(“topics”), within a collection of descriptive labels (“issues”) as a commonly used technique
in software engineering (AlOmar et al. 2022; Silva et al. 2016). We derive our IaC code
review criteria from a manual analysis of a representative sample of IaC code changes. To
ensure objectivity during our analysis, the first two authors independently completed each
step of the analysis, with their results cross-validated by all co-authors. We used the thematic
analysis to perform several iterations of analyzing the IaC code changes. Our process for
creating this taxonomy includes the following steps:

1. Initial identification of labels: Initial identification of labels: During this step, the first two
authors independently analyze the code change owner and reviewers’ discussions and
inline comments of IaC code changes to identify the discussed and resolved IaC coding
issues explicitly stated by the reviewers. Each author will independently associate an
issue with a label, otherwise, they associate it with an existing label. After identifying all
IaC coding issues, all co-authors joined to discuss and refine the labels. In total, 66 IaC-
related labels were identified. Among the identified labels, 37 labels were semantically
equivalent and later standardized, such as “misplaced code” and “wrong code position”,
with another eight being accepted and five causing conflicts. The remaining 16 labels
were removed. All the authors involved in this study have experience in configuration
and software engineering, ranging from three to 10 years.

2. Reviewing labels for merging opportunities: During this step, the labels identified during
the first step were linked. This helped to identify and regroup related labels. Following
discussion with the co-authors, four new labels were identified, 15 labels were merged
(including the five conflicted labels from the first step), and the remaining 35 labels were
relabeled. For example, as our analysis is not a single-step process, we identified a new
issue related to “Adding workarounds in separate files”, and relabeled the issue “taking
into consideration the execution pipeline” to “Check your configuration dependencies”.

3. Translate labels into themes: This step involves identifying the generic themes that
describe the grouped labels generated in the second step. This process identified nine
major topics discussed within the analyzed issues. As our analysis is iterative, we fur-
ther refined our labels and topics. We merged two topics (“Code quality” and “IaC
guidelines”) under the “Best-practices” topic and removed three labels.

It is essential to only consider those issues whose solutions are either explicitly stated as
resolved by the code change owner or are evident in the revised version of the code (referred to
as the code “DIFF”). This approach ensures that we only analyze IaC code changes that were
accepted after the resolution of the issues stated by the reviewers. As we have many merged

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 19 of 52 106

Table 4 Professional experience
of the participants

Years of
experience

Development(#) OpenStack(#) Code review(#) IaC(#)

4-6 − 3 1 4

7-9 2 2 2 2

10-12 1 4 4 3

13-16 3 − 2 −
17-19 1 − − −
20-23 2 − − −
with (#) referring to the number of participants

IaC code changes (308,657) in our OpenStack dataset, we randomly select a representative
sample using the Sampling R package,27 weighted by the distribution of the cycle phases
(development, release-candidate, and post-release). The sample consists of 379 code changes
that were selected with a 95% confidence level and a confidence interval of five (AlOmar
et al. 2022). This implies that we are quite confident that the characteristics observed in our
IaC code changes sample are indicative of the broader population of IaC code changes. The
overall checklist building took approximately 20 days.

To validate our checklist, we reached out to the top 100 most active OpenStack reviewers,
who frequently reviewed IaC code changes. Nine of the invited reviewers participated in our
survey, resulting in an acceptable response rate of 9%, as per standards in software engineering
(Khatoonabadi et al. 2023).Table 4provides a summaryof the reviewers’ experience.Notably,
67% of the participants have seven to 23 years of overall software development experience,
with eight to 10 years dedicated to the OpenStack ecosystem. Additionally, they bring 10
to 15 years of code review experience, coupled with six to 10 years of proficiency in IaC
coding.

We developed a survey28 using a 4-point Likert scale (Wang et al. 2023; Likert 1932) (“I
disagree, I somewhat disagree, I somewhat agree, I agree). This binary approach (agree/dis-
agree) was intended to ensure that the responses directly reflected the experts’ views on the
relevance of each item in our checklist, without the ambiguity that a neutral option might
introduce. We conducted the survey among expert developers on IaC with the primary objec-
tive of validating the relevance of our checklist of IaC-related criteria. We aimed to ascertain
whether each item on the checklist was perceived as relevant or not by these experienced
professionals. By removing the neutral option, we encouraged respondents to take a definitive
decision on each item, thereby providing us with clear indications of the checklist’s validity.
The survey comprised 26 questions, with the initial section focusing on five questions related
to participant demographics. Subsequently, participants were presented with our checklist,
consisting initially of seven topics and 36 items. For each topic, a multiple-choice question
prompted respondents to rate the corresponding items using the Likert scale. Additionally,
two short-answer questions were included, inviting participants to share their thoughts on
the topic name and its practicality.

27 https://search.r-project.org/CRAN/refmans/samplingbook/html/pps.sampling.html
28 https://docs.google.com/forms/d/1lUFE7fB5SAniRtGf2yc0EJNNg8QhkLqLEhMHgKDfsXM/edit#
responses

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 20 of 52 Empirical Software Engineering (2025) 30:106

4 Empirical Study Results and Discussions

In this section, we report and discuss our findings for quantitatively and qualitatively analyz-
ing code review practices when reviewing IaC-related code changes.

4.1 RQ1: HowOften do Developers Review IaC Code Changes?

Motivation In this research question, we aim to understand how often reviewers deal with
IaC code changes throughout the OpenStack release life cycle. Particularly, we aim to visu-
alize any peaks of IaC code changes along the three phases and whether IaC and Non-IaC
code changes follow the same pattern of evolution.

Approach To answer RQ1, we leverage our data to compare the number and evolution of
weekly-basis reviewed IaC and Non-IaC code changes throughout the three cycle phases
(development, release-candidate, and post-release) of the 12 OpenStack releases.

Results Our results reveal that despite the minority of IaC code changes representing only
10% of all code changes, they are reviewed during the whole life-cycle of an OpenStack
release and are found statistically following the same pattern of evolution as the Non-IaC
code changes.

Finding 1:We observe that developers review IaC code changes throughout the three
phases of the OpenStack release cycle. In Fig. 6, we illustrate the evolution of the number
of IaC and Non-IaC code changes through the three cycle phases (i.e., development, release-
candidate, and post-release) of the 12 OpenStack releases per week. We observe that IaC
code changes have increased from the first to the last release (Kilo to Victoria) indicating a
maturation in the IaC codebase for OpenStack. As well, in three out of the 12 releases (i.e.,
Mitaka, Newton, and Ocata), there is a notable increase in the number of IaC code changes
during the release-candidate phase. For instance, we have 149 IaC code changes reviewed
in one week during the release-candidate phase of the Newton release. During the Newton
release cycle, we found that OpenStack underwent a major change to add the interoperability

Fig. 6 Number of reviewed IaC and Non-IaC code changes per week throughout the 12 studied OpenStack
releases. The black dotted line represents the end of the development phase and the start of the release-candidate
phase. The orange dotted line represents the end of the release-candidate phase and the start of the post-release
phase

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 21 of 52 106

Fig. 7 Spearman correlation between IaC and Non-IaC code changes for the 12 releases

feature and better serve end users.29 The observed peak of IaC code changes is likely a result
of the extensive changes related to implementing the interoperability feature encompassing
standards, APIs, and configurations as explained in the release notes.30 This findingmotivates
us to further investigate how these IaC code changes are reviewed compared to Non-IaC code
changes.

Finding 2: Our analysis reveals that IaC code changes follow the same evolution
pattern as Non-IaC code changes across the three phases observed in the 12 OpenStack
releases. As depicted in Fig. 7, our Spearman correlation shows a statistically significant
positive relationship (p-value < 0.001) between IaC and Non-IaC code changes for the 12
releases. The correlation coefficient indicates that the Non-IaC code changes can effectively
account for the variability in the IaC code changes, with a range spanning from 78% to 93%.
These findings could indicate that the development activities in the three phases (i.e., devel-
opment, release-candidate, and post-release) influence both IaC and Non-IaC code changes,
which motivate us to further investigate, as future works, the dependency odds between both
code changes. We emphasize that our correlation results do not imply causation between the
evolution of IaC and Non-IaC code changes.

4.2 RQ2: HowDifferent are Code Review Practices when Reviewing IaC and Non-IaC
Code Changes?

Motivation The purpose of this study is to understand whether code review practices in IaC
code changes differ from Non-IaC code changes. To this end, we use a set of code review
attributes from previous research (AlOmar et al. 2021; Coelho et al. 2021) to compare code

29 https://docs.openstack.org/project-team-guide/introduction.html
30 https://docs.openstack.org/releasenotes/neutron/newton.html

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 22 of 52 Empirical Software Engineering (2025) 30:106

reviews involving IaC scripts to Non-IaC code reviews. This analysis aims to understand
how developers practice code review in the context of IaC code changes. Understanding such
practice provides practitioners with insights on how to effectively manage the code review
process in IaC code changes. This may include considerations such as the duration required
to review an IaC change and the number of reviewers to assign to this type of change, etc.

Approach We compare the code review practices of IaC and Non-IaC code changes by
leveraging 10 different code review attributes listed in Table 2. The attributes we analyzed
include the number of revisions, number of reviewers, number of messages, duration, number
of files, churn, number of added lines, number of deleted lines, description length, and number
of inline comments. To further study if there is an impact of external factors on code review
attributes, we perform Multiple Regression Analysis (MRA) (Edwards 1985) between the
nine code review attributes and the confounding variables, namely the “size” and “age” of
files in a code change, as well as the release “cycle” during which the review took place (i.e.,
development, release candidate, or post-release). We collect our confounding variables data
as follows:

– Size: After collecting the code changes data for all OpenStack projects in JSON format
(cf. Section 3.1), we extract the list of files associated with each code change using the
node “files”. Next, we determine the size of each file by extracting the node “size”
for every file within the respective code change.

– Age: For each file Fi in a code change Ci , we analyze the Git repository to identify the
commit where the file was first introduced in the project. We then compute the file’s age
by subtracting the date of creation of Fi in the project from the current date of Ci .

– Cycle: As discussed in Section 3.2.1, we classify code changes based on their cycle phase
(development, release-candidate, or post-release). For eachfile Fi withinCi ,we assign the
corresponding cycle phase of Ci . For the Spearman correlation analysis, we numerically
encode the cycle phases as follows: 1 for development, 2 for release-candidate, and 3 for
post-release.

MRA helps identify the relationship between the confounding variables and the nine code
changes attributes in terms of the impact of confounding variables on the variation of a code
change attribute in IaC and Non-IaC code changes. In our study, we apply MRA to quantify
the variation in the attributes, denoted as yt , in terms of the effects of the confounding
variables: “size”, “age”, and “cycle”, as expressed in (2)

yt = α + β1 · Cyclet + β2 · Aget + β3 · Sizet + ε (2)

We implement the MRA using the “lm” function from the car31 package in R. Similarly
to Saidani et al. (2021), we apply a log transformation to the confounding variables (Cohen
et al. 2013) to stabilize the variance and improve model fit. As well, to mitigate the risk
of multicollinearity, where one predictor variable can be linearly predicted from the others
(Cohen et al. 2013), we use the Variance Inflation Factor (package car in R). Following the
same approach, we filter out the top 3% of the data as outliers in order to avoid inflating
the model’s fit (Vasilescu et al. 2015). For each model, we report the following metrics:
(i) Coefficients, which quantifies the mathematical relationship between each independent
variable (confounding variable) and the dependent variable (code change attribute), with
higher values indicating a stronger effect; (ii) p-values, which assesses the significance of the
coefficients, providing insight into the reliability of each predictor; (iii) Percentage of Sum of

31 https://cran.r-project.org/web/packages/car/car.pdf

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 23 of 52 106

Table 5 Statistical significance between IaC and Non-IaC code changes review attributes

Attributes IaC Non-IaC Statistical Significance
Median Mean Median Mean p-value Cliff d Bonferroni

p-value

No. of added lines 13 70.37 7 90.75 <2.2e-16 Negligible (0.13) <0.001

No. of deleted lines 3 41.34 2 64.25 <2.2e-16 Negligible (0.06) <0.001

Churn 20 111.72 11 155 <2.2e-16 Negligible (0.13) <0.001

No. of revisions 2 3.35 2 3.09 <2.2e-16 Negligible (0.03) <0.001

Description length 40 41.02 39 40.13 <2.2e-16 Negligible (0.05) <0.001

No. of files 2 4.74 1 2.86 <2.2e-16 Small (0.24) 0

No. of messages 13 19.86 12 22.19 <2.2e-16 Negligible (0.05) <0.001

No. of inline
comments

0 2.07 0 3.20 <2.2e-16 Negligible (-0.02) <0.001

Duration (hours) 73.42 380.23 73.32 438.08 <2.2e-16 Negligible (0.01) <0.001

No. of reviewers 4 5.01 4 6.01 0.68 Negligible (0.00) 0.68

Squares, which represents the proportion of variance explained by each variable, offering a
measure of its contribution to the overall model fit; and (iv) Standard Error, which indicates
the variability of the regressionmodel’s predictions in the units of the response variable (code
change attribute). Smaller standard error values suggest a more precise model fit and greater
confidence in the estimates.”

Results Our results advocate that the code review process of IaC code changes could be as
challenging as Non-IaC code changes, as captured by our 10 code review attributes. We list
our main key findings as follows.

Finding 3: We observe that IaC code changes take as long as Non-IaC code changes,
where developers perform a higher churn on more files with a negligible to small effect
size. In Table 5, we provide an overview of the different code review attributes for IaC
and Non-IaC code changes regardless of the release cycle phases. We first observe that IaC
code changes undergo a higher churn, with a median of 20 compared to a median of 11 for
Non-IaC code changes. This result might be expected, as a higher number of files are found
to be included in IaC code changes with a median of two files compared to the Non-IaC
with a median of one file. However, impacting a larger number of files makes it difficult for
developers and reviewers to monitor the propagated change across the different files. For
instance, in the IaC code change ID:391532,32 reviewers spotted that the file where the new
change took effect is not appropriate for the change as one of the reviewers indicated: “This
seems like it should be done in nova_compute_kvm.yml rather than here”. Furthermore, we
found that in some IaC code changes, the reviewers request to refactor code into separate files,
i.e., adding new files, for better code clarity. For example, one of the reviewers commented, as
part of reviewing the code change ID:391532:33 “Please refactor the new task into a separate
file and import it in the proposed places.” Consequently, the reviewers would exchange a
higher number of messages to discuss all the changes, with a median of 13 compared to a
median of 12 for the Non-IaC code changes, with a p-value < 2.2e-16 and a negligible effect
size of 0.05. We found that IaC code changes take approximately as long as Non-IaC code

32 https://review.opendev.org/c/openstack/openstack-ansible-os_nova/+/391532
33 https://review.opendev.org/c/openstack/kolla-ansible/+/676219

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 24 of 52 Empirical Software Engineering (2025) 30:106

Fig. 8 Boxplots representing the distribution of the 10 code review attributes in the three cycle phases (devel-
opment, release-candidate, and post-release)

changes to be reviewed,with amedian of 73 hourswith a p-value of 1.155e-05 and a negligible
effect size of 0.01. We also found that the same number of reviewers were assigned to both
IaC and Non-IaC code changes (IaC and Non-IaC) with a median of four with no statistical
difference (p-value of 0.68). However, in some IaC code changes, a reviewer might request
the intervention of a puppet expert to validate a code change, as explicitly indicated in a
review comment: “Needs confirmation from puppet cores.” in the code review ID:382551.34

These findings suggest that despite IaC scripts accounting for only 28% of the total number of
reviewed files as found in RQ1, the IaC code changes are given equal importance as Non-IaC
code. Overall, we observe that while most attributes show statistically significant differences
between IaC and Non-IaC code changes, these differences have negligible effect sizes. Our
findings indicate that IaC requires at least the same review duration, number of reviewers,
number of revisions as Non-IaC code changes, even though IaC constitutes a smaller portion
compared to Non-IaC code changes.

To gain a better understanding of the code review process for IaC code changes, we further
analyze these attributes according to the three phases of the OpenStack development cycle
(development, release candidate, and post-release). In Fig. 8, we show the distribution of IaC
and Non-IaC code review attributes across these phases. Three key findings emerged from
this analysis.

Finding 4: During the development and release-candidate phases, reviewers tend
to exchange more messages when reviewing IaC code changes compared to Non-IaC
changes. In Fig. 8, we show that during the development phase, reviewers exchange a higher
number of messages while reviewing IaC code changes (with a median of 15 messages)
compared toNon-IaC changes (with amedian of 13)with a p-value< 2.2e-16 and a negligible
effect size (0.1). We conjecture that the high number of exchanged messages reflects the
effort needed to ensure that the code changes are implemented correctly, and that potential
implementation issues are identified and addressed.A similar pattern is observed in the release
candidate phase, where the median number of messages exchanged during IaC-related code
reviews (median of nine messages) is higher than that for Non-IaC changes (median of 8)
with a p-value equal to 3.37e-05 with a negligible effect size (0.13).

34 https://review.opendev.org/c/openstack/puppet-neutron/+/382551

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 25 of 52 106

Finding 5: Our analysis reveals that IaC code changes take longer to review during
the development phase, but are reviewed faster than Non-IaC code changes during the
release-candidate and post-release phases, even when the same number of reviewers is
assigned. As depicted in Fig. 8, we identify three main observations.

Development phase During the development phase, we find that IaC code changes take
longer to review than Non-IaC code changes, even though more reviewers are assigned on
average to IaC code changes. Specifically, IaC code changes take 1.2 times longer to review
than Non-IaC code changes. This can be because IaC code changes involve more files (a
median of two files) and a larger number of changes, as measured by the churn size (a
median of 21 churn), added lines (a median of 13 lines), and deleted lines (a median of three
lines). Statistical analysis shows that these differences are statistically significant (p <0.05)
with a small to negligible effect size. However, we found in some cases that IaC code changes
that were assigned a very high number of reviewers were reviewed faster, i.e., less than the
median duration of 92.28 hours during the development phase. For example, the code change
ID:61161335 took only 25 hours to be merged but involved 16 reviewers.

It is worth noting that implementing IaC code can often be challenging, as it requires
carefully defining complex, interconnected systems, ensuring idempotency, and accurately
translating configurations acrossmultiple environments to avoidmisconfigurations that could
compromise the infrastructure (Guerriero et al. 2019). On the one hand, in some IaC code
changes, we found that invited reviewers may lack clarity or consensus on resolving certain
issues. For example, the code review ID:31624136 from the puppet-nova project took approx-
imately 298 hours (∼12.4 days), 13 reviewers, and an amount of exerted 470 code churn to
be eventually merged during the development phase of the Newton OpenStack release. The
code change updates the API version through a set of configuration parameters that impact
four files. Despite the collaborative effort, it underwent 11 revisions, during which reviewers
struggled with decisions about which parameters to retain or deprecate and their correspond-
ing values. This struggle is evident in comments such as:“This v2.2 confuses me, but it was
there before so [...]” and “This is probably wrong, there is no nova v3.” The reviewers also
highlighted their uncertainty regarding parameter deprecation timing, as expressed in the
statement: “we don’t know when we will remove? I think it’s good to have an idea”. On the
other hand, in some cases, reviewers may require more experienced reviewers to join the
review process. This is evident in a comment from a reviewer in code change ID:57365737

from the puppet-glance project: “I’m ok with it, but I want someone from CI team to look
at it”. Furthermore, in the code change ID:26547,38 a reviewer requested feedback from
an OpenStack project team on 09-01, commenting: “We need some feedback from glance
team.”, and the glance project team member joined on 11-01. Such statements underscore
the importance of involving domain experts to ensure the accuracy and reliability of IaC
changes.

Release-candidate phase During the release-candidate phase, our analysis shows that IaC
code changes are reviewed and merged faster than Non-IaC code changes, with a 1.2 times
difference in reviewduration. Specifically, IaC code changes have amedian reviewduration of
20.68 hours, while Non-IaC code changes have amedian review duration of 23.71 hours. This
faster review andmerge duration for IaC code changes suggests that reviewers are committed

35 https://review.opendev.org/c/openstack/openstack-ansible-os_neutron/+/611613
36 https://review.opendev.org/c/openstack/puppet-nova/+/316241
37 https://review.opendev.org/c/openstack/tripleo-ci/+/573657
38 https://review.opendev.org/c/openstack/puppet-glance/+/265470

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 26 of 52 Empirical Software Engineering (2025) 30:106

to quickly addressing IaC bugs and resolving them before the new OpenStack release is
deployed in production environments. As explained in Section 2.1.3, the IaC code changes
merged during the release-candidates and post-releases are bug-focused. For instance, the
code change ID:43051939 of the project openstack-ansible-os_keystone took place during the
release-candidate phase to fix a bug, which required a churn amount of 78 and was merged in
less than nine hours. While IaC code changes are reviewed and merged more quickly during
the release candidate phase, they tend to involve more files (a median of two files) and require
more changes (a median churn of 12, median added lines of nine, and median deleted lines
of two) than Non-IaC code changes (median of one file, churn of two, added lines of one,
and deleted lines of one). These differences are statistically significant (p < 0.05) with a
small effect size, which suggests that fixing IaC bugs during the release candidate phase may
be more difficult and time-consuming as they impact a larger number of files. However, the
importance of quickly addressing these bugs may outweigh the additional effort required.
These findings also support the idea that IaC bugs might be given a higher priority during
the later stages of the release cycle or that they are less complex and easier to review, which
motivates a survey with IaC experts.

Post-releasephase During the post-release phase, our analysis shows that IaCcode changes,
which are bug-focused (OpenStack 2022, 2016a), are reviewed and fixed quicker than Non-
IaC bugs. IaC code changes takes a median of 45 hours to be merged during the post-release,
compared to 54 hours for Non-IaC code changes. However, we notice that the review duration
for IaC code changes is longer during the post-release phase than during the release-candidate
phase. Thismight be explicable by the prioritization of identified bugs, as bugs of high-priority
level must be fixed before the release date, and non-critical bugs are left to be fixed post-
release (Teixeira and Karsten 2019). Furthermore, the tight time frame of a release candidate
phase could be a factor that urges developers and reviewers to provide bug fixes promptly. For
example, the code change ID:23535640 of the puppet-neutron project involved 10 reviewers
to be finally merged across the span of 54 days during the post-release phase. Furthermore,
our analysis shows that fixing IaC bugs during the post-release phase tends to involve more
files (median of two), require more churn (median of 17), and more added lines (median of
12), compared to Non-IaC code changes (median of one file, churn of 10, and added lines
of seven) with a statistical significance of a p-value <2.2e-16 and a small effect size. This
finding suggests that developers need to be particularly careful when implementing changes
requested by reviewers during the IaC code review process, given the larger number of files
involved. Future research may prompt us to examine the nature of the IaC bugs identified in
more detail.

We present in Table 6 the Multiple Regression Analysis (MRA) results for both IaC and
Non-IaC code changes. For each variable,we report its coefficients (Coeff), the corresponding
percentage of sum of squares (% Sum Sq) as a measure of variance explained by the variable,
and the standard error of the regression (Error), which reflects the average distance between
the observed values and the regression line. Statistical significance is indicated by asterisks.
We consider a coefficient to be important if it is statistically significant (p < 0.05).

The regression results indicate that the confounding variables (size, age, and cycle) are
statistically significant for 86% of the attributes (p-value < 0.05). However, their impact on
the variance of the attributes is considered small with a low percentage of sum squares for all
confounding variables, except for the size reflecting 10% of the variation in the number of

39 https://review.opendev.org/c/openstack/openstack-ansible-os_keystone/+/430519
40 https://review.opendev.org/c/openstack/puppet-neutron/+/235356

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 27 of 52 106

Table 6 Multiple Regression Analysis results for the confounding variables {size, age, cycle} impact on the
code change review attributes for IaC and Non-IaC code changes

IaC Non-IaC
Attributes Variables Coeff Error p % Sum Sq. Coeff Error p % Sum Sq.

Duration Intercept 327.16 17.07 *** 217.21 3.80 ***

log(Size) -0.95 2.95 0.001 0.89 0.48 . 0.001

log(Age) 3.91 1.95 * 0.04 13.97 0.44 *** 0.42

log(Cycle) -145.29 14.06 *** 1.25 -69.36 3.59 *** 0.15

R2 0.012 0.005

No. of revisions Intercept 4.61 0.09 *** 4.64 0.02 ***

log(Size) -0.15 0.01 *** 0.88 0.02 0.002 *** 0.02

log(Age) 0.04 0.01 *** 0.15 -0.08 0.002 *** 0.46

log(Cycle) -1.89 0.08 *** 5.94 -1.91 0.02 *** 3.58

R2 0.07 0.04

No. of reviewers Intercept 5.35 0.09 *** 4.77 0.02 ***

log(Size) 0.16 0.01 *** 1.08 0.16 0.002 *** 1.33

log(Age) -0.004 0.01 0.002 -0.01 0.002 *** 0.02

log(Cycle) -1.21 0.07 *** 2.75 -0.61 0.02 *** 0.34

R2 0.03 0.01

Added lines Intercept 10.66 0.71 *** 7.76 0.13 ***

log(Size) 2.40 0.12 *** 3.92 2.19 0.01 *** 6

log(Age) -2.40 0.08 *** 8.91 -1.94 0.01 *** 5.66

log(Cycle) 2.34 0.58 *** 0.16 1.70 0.12 *** 0.06

R2 0.10 0.09

Deleted lines Intercept 3.68 0.36 *** 2.51 0.07 ***

log(Size) -0.22 0.06 *** 0.14 -0.05 0.009 *** 0.01

log(Age) 0.70 0.04 *** 3.21 0.43 0.008 *** 1.14

log(Cycle) -2.85 0.30 *** 1.02 -0.81 0.06 *** 0.06

R2 0.04 0.01

No. of files Intercept 19.97 0.57 *** 28.64 0.22 ***

log(Size) -3.13 0.09 *** 10.18 -1.70 0.02 *** 1.43

log(Age) 1.14 0.06 *** 3.11 -1.12 0.02 *** 0.74

log(Cycle) -5.88 0.46 *** 1.59 -3.1 0.21 *** 0.08

R2 0.12 0.03

No. of inline comments Intercept 2.95 0.14 *** 3.35 0.03 ***

log(Size) 0.01 0.02 0.006 0.11 0.004 *** 0.32

log(Age) -0.03 0.01 * 0.05 -0.12 0.003 *** 0.47

log(Cycle) -1.95 0.11 *** 3.17 -2.09 0.03 *** 1.91

R2 0.03 0.02

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 28 of 52 Empirical Software Engineering (2025) 30:106

Table 6 continued

IaC Non-IaC
Attributes Variables Coeff Error p % Sum Sq. Coeff Error p % Sum Sq.

No. of messages Intercept 20.39 0.39 *** 19.15 0.08 ***

log(Size) 0.27 0.06 *** 0.18 0.42 0.01 *** 0.67

log(Age) -0.03 0.04 0.006 -0.17 0.009 *** 0.12

log(Cycle) -6.32 0.32 *** 4.21 -5.58 0.07 *** 2.07

R2 0.02 0.02

Description length Intercept 33.48 0.50 *** 32.68 0.10 ***

log(Size) 0.49 0.08 *** 0.38 0.86 0.01 *** 1.81

log(Age) 0.11 0.05 * 0.05 -0.13 0.01 *** 0.05

log(Cycle) 3.79 0.41 *** 0.98 3.33 0.09 *** 0.48

R2 0.01 0.02

***: p < 0.001, **: p <0.01, *: p < 0.05, ‘.’: p < 0.1, ‘ ’: p > 0.1

files. Furthermore, the significance of the confounding variables in explaining the variation in
the attributes remains limited, as reflected by the low R2 values. Particularly, we observe that
the cycle has higher coefficient than age and size in all attributes except for the Added lines.
For example, the cycle has a high negative coefficient of 145.29 for the duration of IaC code
changes and a negative coefficient of 69.36 for the Non-IaC code changes. That is, for one
unit variation in cycle, the duration of IaC code changes tends to decrease by 145.29 hours
and by 69.36 hours for the Non-IaC code changes. However, the cycle only explains less than
1% of the variance in the duration. Still, we conducted our analysis based on the cycle phases
(development, release-candidate, and post-release). The results indicate that while statistical
significance is found in many cases, the variables explain a small proportion of the variation
in code change attributes for IaC and Non-IaC code changes. These findings suggest that the
confounding variables are not impacting our initial conclusions and our results are valid. i.e.,
the difference between the code review attributes for IaC and Non-IaC code changes is due
to the type of files (IaC or Non-IaC) and not the size, age, or cycle.

4.3 RQ3:What is the Contribution of ReviewersWorking on IaC Code Changes?

Motivation Despite that IaC code changes represent only 10% of the studied code changes,
the median number of reviewers assigned to IaC code changes is no different from those
assigned to Non-IaC code changes, and also the review process for IaC code changes takes
the same duration as forNon-IaC code changes. Therefore,wewant to extract the contribution
of reviewers involved in IaC code changes. Prior studies (Peruma et al. 2019; AlOmar et al.
2021) have shown that more experienced developers are often more involved in specific
code changes, e.g., changes related to code refactoring. In this research question, we aim to
investigate if reviewers with more experience, as measured by their contributions, are more
likely to review IaC code changes.

Approach To examine the reviewers’ contribution to the OpenStack review process, we
utilize the number of reviewed and authored code changes as a proxy for their contribution.
Similarly to previous studies (Peruma et al. 2019; AlOmar et al. 2021), we compute the
Reviewer Contribution Score (RCS) for each reviewer in our dataset (cf. Section 3 Step 3.1).

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 29 of 52 106

Then, we further inspect whether the reviewers involved in IaC code changes are among the
most active; i.e., contribute more to the review and development process of OpenStack.

Results As shown in Fig. 9, we distinguish between two types of contributions, (1) review-
ers who review and author only Non-IaC code changes (depicted as “Non-IaC”) and (2)
reviewers who review at least one IaC code change (depicted as “IaC”). We found that our
dataset includes a significant number of reviewers who contributed to Non-IaC code changes.
However, these reviewers do not have the highest RCS scores.

Finding 6: We observe that reviewers who review and author IaC code changes
are more contributing to the review process of OpenStack than Non-IaC reviewers. A
clear observation from Fig. 9 shows that the two types (IaC and Non-IaC) of reviewers’
contributions follow the same pattern throughout the 12 OpenStack releases. The density
plot distinctly illustrates a left-skewed to evenly distributed data pattern for IaC reviewers’
RCS in contrast to the right-skewed distribution observed for Non-IaC reviewers’ RCS.
This suggests that IaC reviewers made more contributions to the OpenStack review process
compared to Non-IaC reviewers. Although there was some overlap in the density plot, the
majority of reviewers who reviewed Non-IaC code changes had lower RCS scores, while IaC
reviewers had higher RCS scores. Statistically, IaC reviewers had the highest RCS scores,
with maximum scores ranging from 0.07 to 0.22. Although Non-IaC reviewers were more
prevalent in the dataset, they had the lowest RCS scores, with a maximum range from 0.03
to 0.12.

Similarly to AlOmar et al. (2021), we perform a non-parametricMann-WhitneyWilcoxon
rank-sum test on theRCSvalues for IaCandNon-IaC reviewers for the 12OpenStack releases.
We obtained statistically significant p-values (< 0.001) with a large effect size between the
two groups of reviewers. Therefore, this suggests that Non-IaC reviewers are less contributing

Fig. 9 Contribution score of reviewers working on IaC and Non-IaC code changes of OpenStack releases

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 30 of 52 Empirical Software Engineering (2025) 30:106

to the review process of OpenStack development than those who review both IaC and Non-
IaC code changes (IaC reviewers). These results may indicate that IaC reviewers are more
engaged in all code changes that involve an interconnectedness between IaC and Non-IaC
code changes. IaC reviewers likely possess specialized knowledge and expertise related to
infrastructure configurations, which enables them to make more substantial contributions to
both IaC andNon-IaC code changes. Our analysis suggests that a dedicated group of develop-
ers is primarily responsible for reviewing and developing IaC code changes. However, these
developers also participate in reviewing Non-IaC code changes, indicating a collaborative
effort between IaC and Non-IaC teams. These findings lead us to investigate whether the
dedicated IaC reviewers are among the active reviewers in OpenStack.

Finding 7: Developers that are mostly contributing to the review process of IaC code
changes are the most involved in the development of IaC code changes, as presented in
Fig. 10. First, we found that the top-5% reviewers are reviewing 44% to 75% of the total
number of IaC code changes than the rest of the reviewers. Thus, we advocate that dedicat-
ed/experienced reviewers be assigned to heavily review IaC-related code changes. Figure 10a
shows the distribution of reviewed IaC code changes for both top-5% and remaining review-
ers (i.e., 95%). The first notable observation is the volume of IaC code changes reviewed
by both groups of reviewers. The top-5% reviewers have a higher contribution to IaC code
changes review process compared to the rest of the reviewers. On average, the top-5% review-
ers reviewed 12 to 88 IaC code changes in the 12 OpenStack releases (the maximum ranges
from 439 to 1,497), whereas the rest of the reviewers average around one to two IaC code
changes (the maximum ranges from 57 to 186), despite being more numerous in the dataset.
A non-parametricWilcoxon rank-sum test was conducted on the number of IaC code changes
reviewed by both the top-5% and the rest of the reviewers and showed a statistically signifi-
cant p-value (<2.2e-16) between the two groups of reviewers in the 12 OpenStack releases,
with a medium effect size in the Kilo release and a large effect size in all other releases.

Furthermore, we also found that the top-5% of reviewers are authoring more IaC code
changes than the remaining 95% of reviewers, as presented in Fig. 10b. On average, the top-
5% reviewers authored three to 12 code changes in the 12 OpenStack releases (the maximum
ranges from 95 to 339), whereas the rest of the reviewers average around one to two code
changes (the maximum ranges from one to 124), despite being more numerous in the dataset.
A non-parametricWilcoxon rank-sum test was conducted on the number of IaC code changes

Fig. 10 The distribution of IaC code changes (a) reviewed and (b) authored by the Top-5% of reviewers
compared to the rest 95% of reviewers

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 31 of 52 106

authored by both the top-5% and the rest of the reviewers and showed a statistically significant
p-value (<0.001) between the two groups of reviewers in the 12 OpenStack releases, with a
medium to large effect sizes.

4.4 RQ4:What Criteria are Considered during the Code Review toMerge IaC Code
Changes?

Motivation The second research question (RQ2) revealed that during the development and
release-candidate phases, there is a higher number ofmessages exchanged by reviewers when
reviewing IaC code changes compared to Non-IaC changes. Furthermore, we found in RQ3
that the top-5% of these reviewers participate in 44% to 75% of IaC code changes. Therefore,
we sought to determine the criteria that reviewers discuss and consider when merging an IaC
code change during the three phases and present themas a checklist. Similarly toKumara et al.
(2021) who established a checklist for the bad and good practices of IaC development, we
explore this practice from a code review perspective. This checklist can assist developers in
identifying IaC-related issues they might not have been aware of, and may also help improve
the quality of IaC code changes.

Approach To get a more qualitative sense, we manually analyze the discussion and inline
comments of reviewers in IaC-related code changes. Our objective is to understand the most
common issues and quality standards that are addressed during the review process of IaC
code changes. This will provide us with a better qualitative understanding of what needs to be
considered when coding IaC. Furthermore, we surveyed nine of the most active OpenStack
reviewers to validate our checklist.

Results Our checklist, as shown in Fig. 11, is composed of two layers: the top layer contains
seven generic topics that group issues with similar context, whereas the lower layer encom-
passes 38 issues that provide a fine-grained explanation of the generic topics discussed during
the IaC code review.

Finding 8: Our analysis identifies sevenmain topics related to IaC that reviewers dis-
cuss, encompassing a total of 38 specific issues.As shown in Fig. 12, the checklist consists
of seven generic topics: (1) Logic, (2) Best-practices, (3) Documentation, (4) Compatibility,
(5) Dependencies, (6) Test, and (7) Security. According to the survey findings, out of the total
324 ratings given by the developers, we only have received five negative ratings of “I dis-
agree” (1) and “I somewhat disagree” (4), resulting in a 98% acceptance rate of the checklist
items. Four participants gave the rating “disagree” (1) and “I somewhat disagree” (3) to
the best-practice related item “Always be aware of new IRC conventions and upgrades.” for
not being clear. Therefore, we rephrase our item to “Always be aware of OpenStack Internet
Relay Chat (IRC) conventions.” For the same reason, another participant gave “I somewhat
disagree” (1) rating to the documentation related item “Add a bug report to document bug
fixes” for the same reason. Thus, we rephrase our item to “Add a bug report to document
new detected bugs.” Additionally, two reviewers suggested including two new items under
the topics of “Security” and “Logic”. We provide a detailed description of each topic and
further clarify our checklist items. These topics provide a high-level context for 38 specific
issues, which are detailed in Table 7.

(T1) Logic This topic encompasses logic-related issues, such as incorrect values assigned
to configuration options or code placed in the wrong location. It is the first most discussed
topic by reviewers when reviewing IaC code changes, accounting for 33% of discussions.

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 32 of 52 Empirical Software Engineering (2025) 30:106

Fig. 11 The 38 identified IaC code review acceptance criteria using thematic analysis

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 33 of 52 106

Fig. 12 The distribution of the seven identified topics in IaC code changes

Table 7 A taxonomy of 38 IaC code changes review checklist in Code Review

Topic Checklist item Examples (from IaC review discussions)

(T1)
Documentation

Add a release-note to document the
change.

“The code looks good, but could you please
add a release note?”(item example 2021a)

Add a bug report to document new
detected bugs.

“Please create a bug report for this issue and
link it to the change.”(item example 2021b)

Add explicative inline code comments. “Can you document what each one means in
this context please?”(item example 2021c)

Add dependency information (depends-
on) in the commit message.

“Needs Depends-On: in commit message
for puppet-tripleo dependency which adds
this.”(item example 2021d)

Follow the standard format of commit
messages.

“Please follow proper formatting for commit
messages:
Title of commit < less than 50 characters
<CR>

Description of commit (wrapped at 71 char-
acters) may be multiline
Closes-Bug: #X or TrivialFix or Imple-
ments.”(item example 2021e)

(T2) Logic Check if assigned parameters or values are
correct.

“Should default to false.” (item example
2021f)

Make sure to correctly initialize variables
before usage.

“We spotted it misses hiera (‘rabbit_ipv6’).”
(item example 2021g)

Verify the code is placed in the correct file
(e.g., workarounds files).

“I just realized this is the wrong
file, it should be spec/classes/oc-
tavia_health_manager_spec.rb not
octavia_worker_spec.rb.”(item example
2021h)

Make sure you have the right environment
variable encapsulation.

“Should we add ‘export’. It might be quite
useful to have it between other scripts.”(item
example 2021i)

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 34 of 52 Empirical Software Engineering (2025) 30:106

Table 7 continued

Topic Checklist item Examples (from IaC review discussions)

Verify no code is logically misplaced
within a file (e.g., options execution
order).

“You want this in line 29 instead.”(itemexam-
ple 2021j)

Do not duplicate default values. “That’s the default, remove it.”(item example
2021k)

Add filters to Ansible tasks for boolean
comparison.

“It’s common in ansible to set flags to “no”
but without a bool filter this will be evaluated
as true.” (item example 2021l)

Add a blank line before a configuration
group section.

“Should add a blank line before this section.”
(item example 2021m)

Add unless commands to make IaC task
execution idempotent.

“This is a task that basically is being used
by other puppet resources to ensure that
rabbitmq is ready. If the unless is true it’s
“skipped” by puppet but still put in a specific
place for ordering which is what we need. If
anything was subscribed to this they would
not get notifications, thus it would be prop-
erly idempotent.”(item example 2021n)

Specify the extension of files in Ansible
tasks.

“You should add the .yaml extension (zuul
developers said that they will remove the
support for automagically adding the exten-
sion).”(item example 2021o)

Set deprecated parameters to UNDEF. “Deprecated parameters are usually set to
undef by default, so we know they do noth-
ing.” (item example 2021p)

Always check your playbooks tasks
names.

(T3)
Best-
practices

Remove unused code (e.g., Ansible tasks,
comments, parameters).

“Is this var needed?”(item example 2021q)

Prioritize the use of DSL built-in func-
tions.

“Please use empty function from stdlib.”(item
example 2021r)

Use coherent naming conventions. “All the other python-tempestconf variables
have a “tempest_” prefix except these two.”
(item example 2021s)

Always be aware of OpenStack Internet
Relay Chat (IRC) conventions.

“This condition ansible_architecture ==
“ppc64le” for each task inside this file is
not required when ansible version is >=
2.0. Because include statement for this file
in the caller nova_compute_kvm.yml already
has this condition.” (item example 2021t)

Respect the standard DSL annotation. “Could you use yaml notation here?”(item
example 2021u)

Add warning for exceptions. “Add a notice/warning here.” (item example
2021v)

Do not duplicate code. “I find it sad that we would have to dupli-
cate this logic everywhere.” (item example
2021w)

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 35 of 52 106

Table 7 continued

Topic Checklist item Examples (from IaC review discussions)

Make sure to avoid what makes lint fail
(e.g., whitespace, indents).

“This trailing whitespace is making the pup-
pet lint job fail.”(item example 2021x)

keep copyrights. “The previous copyright should not be
removed.”(item example 2021y)

(T4)
Compatibility

Check options/parameters values com-
patibility.

“Fair enough - Seems to be consistent for
other services. As mentioned in IRC though,
considering that this is a microservice, we
should change the default in novajoin to
127.0.0.1 by default.”(item example 2021z)

Check options/parameters types compat-
ibility.

“So one of those minor backwards compat-
ibility things, $provider_mappings = false
will cause this to error because empty only
works with array, hashes, strings and inte-
gers.”(item example 2021aa)

Avoid using a deprecated option or param-
eter.

“Usage of cinder::volume::dellsc_iscsi
is deprecated, please use cin-
der::backend::dellsc_iscsi instead.” (item
example 2021ab)

Make sure you do not use a deprecated
code structure.

“Don’t use bare variable in condition, this is
deprecated since Ansible 2.8.”(item example
2021ac)

(T5)
Dependencies

Check your configuration dependency. “How do we ensure that this is executed after
all repos have been configured?”(item exam-
ple 2021ac)

Add notify handler between dependent
IaC tasks.

“Notify the “Reload systemd daemon”
instead of manually doing it.”(item example
2021ae)

(T6) Test Update corresponding tests when making
configuration changes.

“Could you please cover this case in
tests?”(item example 2021af)

Test options overrides. “I am not sure is it wise idea to override a fact
in ansible, can you make it a single expres-
sion?” (item example 2021ag)

Test if the assigned parameters or values
are correct.

(T7) Security Do not leave default credentials. “Leaving default credentials is a terrible idea
for security. we should enforce the parameters
by no leaving default values.”(item example
2021ah)

Verify that credentials do not leak in the
logs.

“I think we should add a logoutput to false,
so if registration fails we don’t leak the cre-
dentials in the logs.”(item example 2021i)

Check resources permissions.

In 43% of the cases, reviewers identified incorrect values being assigned to parameters or
options. This is a particularly important issue as incorrect values for these options can cause
significant errors in IaC, as pointed out by Sayagh et al. (2017). In 26% of the cases, reviewers
emphasized the importance of assigning deprecated options to the UNDEF value without any
deprecation period to ensure that these options do not affect the system. For example, in the
code change ID:491309, one of the reviewers commented: “should we just switch this to

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 36 of 52 Empirical Software Engineering (2025) 30:106

undef now since it has no effect otherwise we’ll always generate that warning” (OpenDev
2017d). Additionally, 13% of the issues involved the need to add file extensions to Ansible
tasks, as they are no longer added automatically.We support this by the comment of one of the
reviewers in ID:509242, saying: “You should add the .yaml extension (zuul developers said
that they will remove the support for automagically adding the extension)” (OpenDev 2017c).
In 9% of the cases, reviewers pointed out a code that was misplaced within a file. In 7% of the
cases, they identified a code that was placed in the wrong file, such as placing the workaround
code in external workaround files or configuration section.41 For example, we find in the code
change ID:626637 that a reviewer spotted misplaced code and explicitly commented: “I just
realized this is the wrong file, it should be spec/classes/octavia_health_manager_spec.rb
not octavia_worker_spec.rb” (OpenDev 2019b). Finally, in a small percentage (1%) of the
cases, reviewers identified issues related to the idempotency of the IaC code, which refers to
the ability of the code to produce the same output in different environments. Kumara et al.
(2021) also discouraged any IaC coding practices that defy the idempotency of IaC scripts.
One of the surveyed reviewers has also provided an additional item that needs to be checked
related to naming the Ansible Playbooks tasks names. We have added the new recommended
point to our items under “Always check your playbooks tasks names.” Another participant
has stated: “I found this category of logic checklist quite comprehensive. This is important
not only for newcomers in the project but also for both code change owners and reviewers.”,
which empowers the usefulness of our logic-related items.

(T2) Best-practices We found that 28% of the reviewers’ comments focused on best practices
for IaC coding. Out of these comments, 29% were concerned with removing unused or dead
code, such as removing unnecessary IaC tasks, options, parameters, or code comments that are
no longer needed. For example, in the code change ID:307419, a reviewer requested to remove
a variable that is not needed, as they commented: “is this var needed?” (OpenDev 2016a).
In the second most common best practices-related issue, accounting for 28%, the reviewers
requested that developers include copyrights in the code files. One of the surveyed developers
indicated that “Copyrights are red line for any code review”. Furthermore, 16% covered
issues such as avoiding duplication of default values for configuration options and adhering
to community conventions. Additionally, 13% was related to the proper use of annotations in
the IaC tool’s language (DSL),which is in linewith the identified best practice inKumara et al.
(2021) related to “Make code style and formatting consistent”. Many comments requested
that developers follow standard DSL annotations, such as YAML notation. In addition, 8%
of the comments addressed the importance of using conventional names for options and
parameters, while in the remaining 6% of the cases, reviewers identified issues related to the
Lint tool, which checks for syntax errors and other cosmetic problems such as line length,
trailing spaces, and indentation. Developers should be aware of these types of errors and try
to avoid them to avoid wasting reviewers’ time.

(T3) Documentation Documenting code changes is crucial for keeping track of the current
state of the infrastructure. We observed that 23.55% of the most common reviewer concerns
were related to documentation. This highlights the importance placed by reviewers on doc-
umenting IaC code changes. However, it also reveals the gap in developers’ understanding
of the importance of documentation in IaC. In 65% of the comments, reviewers requested
updates to the documentation (commitmessage or release notes) to better describe the purpose
of the IaC code change or to provide more detailed information. The second most common
documentation-related issue is the need to add a release note to document the change that

41 https://docs.openstack.org/nova/pike/admin/root-wrap-reference.html

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 37 of 52 106

occurred in 19.3% of the cases. For instance, in the IaC code change ID:528250, a reviewer
commented: “The code looks good, but could you please add a release note?” (OpenDev
2017b). Another 7% of the comments focused on the lack of explanatory code comments,
where reviewers ask for more documentation in the IaC code files. For example, in the code
change ID:509186, a reviewer asked for a more explanatory code comment:“Can you doc-
ument what each one means in this context please?” (OpenDev 2017a). Overall, reviewers
encourage adopting the best documentation practices into the development process, such as
through code comments or separate documentation files. Our findings align with the IaC best
practices list established by Kumara et al. (2021) about documentation.

(T4) Compatibility In this topic, we identified 6% of the issues related to compatibility
that occur when different resources, such as options, IaC tasks, or parameters do not work
together as intended, either because of incompatible values (i.e., the values of the options
do not work well together or cause conflicts) or types (i.e., the options do not possess the
right type) or because deprecated code is being used. For example, in 64.29% of the cases,
reviewers identified the use of deprecated code structures from older versions of IaCDSL. For
instance, one reviewer identified the use of a deprecated code structure from an older version
of the Ansible IaC tool, stating: “Don’t use bare variable in condition, this is deprecated
since Ansible 2.8.” (OpenDev 2019a). In 21% and 7% of the cases, reviewers pointed out
issues related to the use of deprecated options or parameters that are no longer functional
in the system and the use of incompatible parameter types that could cause conflicts. These
findings highlight the importance of ensuring compatibility in IaC code and avoiding the use
of deprecated code structures.

(T5) Dependencies In 5% of the comments, reviewers focused on issues related to depen-
dencies within the system. The majority of these comments (83%) concerned configuration
dependencies. In particular, reviewers discussed the order in which system resources, such
as packages, should be configured. For example, one reviewer asked: “How do we ensure
that this is executed after all repo have been configured?” (OpenDev 2018). Incorrectly
managing dependencies can lead to broken dependencies and unexpected system behavior,
so it is important to clearly document the configuration workflow. The remaining 17% of
comments in this topic focused on notifications for service changes and notifications for
dependent Ansible tasks with their execution states. For example, one of the reviewers in the
code change ID:391532 commented:“Notify the ’Reload systemd daemon’(task) instead of
manually doing it” (OpenDev 2016b). These findings underscore the importance of carefully
managing dependencies in IaC code to avoid bugs and ensure smooth system operation.

(T6) Test Testing is crucial to ensure that code changes do not negatively impact the system’s
functionality. Similar to Kumara et al. (2021), we also found that developers usually test as
they code, as only a tiny 4% of the code changes reviewed included testing issues. In 80%
of these cases, reviewers requested updates to the tests to include different scenarios. This
suggests that the tests may not be sufficient to fully test IaC code, as they may not cover all
possible scenarios. As one reviewer in the code change, ID:750656 commented: “We should
really test whatever it is that users are expected to do.” (OpenDev 2020). It is important
for developers to regularly update and validate their tests to cover all new changes to the
IaC code, as it may be interleaved with other production tasks. In the remaining 20% of the
cases, reviewers requested specific types of testing, such as testing of overridden options to

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 38 of 52 Empirical Software Engineering (2025) 30:106

Table 8 The seven topics distribution in the three OpenStack cycle phases: development, release-candidate,
and post-release

Topics Development Release-candidate Post-release

(T1) Logic 56% 2% 42%

(T2) Best-practices 56% 4% 40%

(T3) Documentation 56% 2% 42%

(T4) Compatibility 64% 7% 29%

(T5) Dependencies 25% 8% 67%

(T6) Test 60% 10% 30%

(T7) Security 67% 0% 33%

ensure that the expected values are being used. To prevent bugs and avoid breaking the code,
developers should ensure that their tests cover all emerging changes in their IaC code.

(T7) Security Ensuring the security of a software system is critical, particularly in the context
of IaC where infrastructure can be vulnerable to threats such as data breaches. While security
issues were the least common topic identified, representing only 1% of the comments, we
added them to our checklist, as security best practices are of paramount importance in IaC
and can lead to severe errors as pointed out by Rahman et al. (2019, 2021). We found 67% of
these issues involved concerns about leaving default credentials in the code or leaking their
values in logs. For example, in the code change ID:404892, one of the reviewers commented:
“leaving default credentials is a terrible idea for security. we should enforce the parameters
by no leaving default values.” (OpenDev 2016c). We also mention that Kumara et al. (2021)
encourage isolating secrets (sensitive information) from code. Developers need to prioritize
security in the development process to protect against potential threats. Furthermore, a sur-
veyed developer has recommended a new item related to resources permission to prevent
unauthorized components from using a resource if they were mistakenly been given wrong
permissions.42 We label this new item as “Check resources permissions”.

Finding 9: We observe that six topics (Logic, Best-practices, Documentation, Com-
patibility, Dependencies, and Test) are present in the three phases of OpenStack release
cycle except for the Security. In Table 8, we present the percentages of issues related to
each topic that are raised during each phase of the OpenStack release cycle. We observe
that reviewers consistently identify issues across all three phases, highlighting a need for
improved developer communication throughout the release cycle. Our checklist proves use-
ful in preventing the recurrence of issues identified in a previous phase. Notably, six topics,
constituting over 51% of all discussed issues, are more prevalent in the development phase.
The top three topics mostly discussed in this phase, as opposed to the release-candidate and
post-release phases, are Security (T7), Compatibility (T4), and Test (T6). Although these
topics may not be extensively discussed overall, they receive higher attention in the initial
phase of OpenStack release development due to their critical role in testing system security
and compatibility.

Particularly, during the development phase, compatibility is discussed extensively,
accounting for 64% of the reviews, because ensuring that scripts work seamlessly across
various environments is crucial. Early identification and resolution of compatibility issues
prevent deployment failures later in the release cycle. In the release-candidate phase, only

42 https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 39 of 52 106

7% of the reviews focus on compatibility, as most issues should have been identified and
resolved by then. However, in the post-release phase, discussions on compatibility increase
to 29% as real-world usage may uncover unforeseen compatibility problems that need to be
addressed tomaintain the release’s reliability and user satisfaction. The same goes for testing,
as it is a critical focus during the development phase, with 60% of the reviews addressing
this topic, as it is essential to identify and fix issues early to ensure the IaC scripts function
correctly. In the release-candidate phase, testing discussions drop to 10% because the pri-
mary focus shifts to final verification and stabilizing the release. In the post-release phase,
testing becomes relevant again, accounting for 30% of the reviews, as ongoing maintenance
and updates necessitate continuous testing to address any new issues that arise from real-
world usage. Similarly, security related issues are a major concern during the development
phase, with 67% of the reviews discussing it. Identifying and mitigating potential vulnerabil-
ities early on is crucial to prevent severe issues later. Interestingly, security is not discussed
(0%) in the release-candidate phase, possibly because the focus at this stage is on finaliz-
ing the product and addressing critical bugs rather than introducing new security measures.
In the post-release phase, security discussions increase to 33% as ongoing monitoring and
real-world usage may reveal new vulnerabilities that need to be addressed promptly. These
insights encourage developing a survey with IaC developers to understand their prior focus
on IaC during each phase and why.

Additionally, we observe that issues related to Dependencies (T5) are most frequently
brought up in the post-release phase, primarily centered on bug fixing. To comprehend why
dependencies are a common topic during this bug-focused phase, we examined bug reports
submitted to the bug tracking system.43 These reports were specifically associated with code
changes where dependency issues were identified in our manually analyzed representative
sample of IaC code changes.We found five code changes where dependency issues occurred,
and we accessed their bug reports, by clicking on the “Closes-Bug” link in the commit
message of each code change. Upon manually analyzing the five related bug reports (bug
description and exchanged messages), we identified two main types of dependency-related
issues. The first type pertains to issues with package dependencies. For example, in the code
change ID:298679, the deployment of the module puppet-horizon should be installing the
python-memcache package as well, which was not the case (Launchpad 2016a), as one of
the developers indicated:“it likely sounds a dependency issue in horizon packaging [...]”.
The second type involves conflicts with configuration option dependencies. For example, in
the code change ID:265470, the developer clearly stated: “[...] This is because the value for
swift_store_config_file is set in the [DEFAULT] section instead of the [glance_store]
section like it should be” (Launchpad 2016b). These examples show that the identified issues
pertain to already broken dependencies. We also notice that the release-candidate phase has
the fewest number of issues raised. This could be attributed to the time constraints faced by
developers and reviewers, who may be under deadline pressure to successfully launch the
new OpenStack release. As a result, their focus tends to lean towards addressing major bugs
that could potentially disrupt the timely release goal.

5 Study Implications

For researchers Our analysis of RQ1 demonstrates that the IaC component within the Open-
Stack ecosystem undergoes modifications throughout all three phases of the release cycle:

43 https://bugs.launchpad.net

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 40 of 52 Empirical Software Engineering (2025) 30:106

development, release candidate, and post-release. Researchers can delve deeper into the
dependencies between IaC and Non-IaC changes to predict a change. Furthermore, this
exploration can help identify best practices for IaC development depending on the different
release cycle phases. Precisely, researchers are encouraged to investigate whether the changes
occurring right before the release date are driven by last-minute optimizations, debugging
efforts, or other factors. Furthermore, they are encouraged to delve into the nature of changes
observed post-release and assess whether these changes are reactive responses to new issues
or if they stem from a continuous improvement process. Besides, researchers are encouraged
to build on top of our preliminary checklist to include new emerging IaC-related princi-
ples that are not covered in our study or those stemming from new advancements in the
domain of IaC frameworks. While our checklist focuses primarily on what reviewers dis-
cuss with code change owners, future works can extend our study by exploring guidelines
or best practices for writing code reviews while there are no established guidelines for IaC,
surveys with expert IaC practitioners can help identify and document best practice for IaC
implementation and design. Researchers are also encouraged to explore different factors of
IaC code changes such as their inherent complexity, the number of dependencies with other
code changes, etc. Moreover, our findings motivate further research on the underlying rea-
sons for the observed patterns between IaC and Non-IaC code changes. For example, it is
interesting to further investigate the development cycle that has a higher negative coefficient
for IaC code changes duration compared to Non-IaC code changes. Understanding the rea-
sons behind these patterns can shed light on the unique characteristics of IaC, such as its
code change/review complexity, requirements, etc. Furthermore, researchers can apply our
approach to pull-request based code review processes to investigate whether the observed
patterns between IaC and Non-IaC changes hold true in these platforms, and to potentially
uncover platform-specific or project-specific influences on code review attributes that will
enrich our understanding of IaC.

For practitioners Practitioners can use the results of RQ1 in the IaC modifications occur-
ring throughout the release cycle to better understand and manage changes in their IaC
components. This knowledge can guide development practices and help in anticipating/pre-
dicting potential challenges at different cycle phases. Besides, the parallel evolution observed
between IaC and Non-IaC code changes underscores the importance of collaborative efforts
among development teams and reviewers. A collaborative and effective code review pro-
cess should be tailored to accommodate both IaC and Non-IaC code changes. Furthermore,
leveraging established code review practices for Non-IaC code can be beneficial for IaC
code changes, especially when involving the same developers. Furthermore, our findings
of RQ2 show that despite IaC scripts representing a minority percentage of the code base,
their code changes require equal or more effort than Non-IaC code changes. Given that IaC
code changes take as long as Non-IaC changes but involve a higher churn of more files, IaC
practitioners should focus on managing IaC more effectively. Particularly, findings emerging
from Catolino et al. (2019) show that configuration-related bugs take longer to be integrated
in the code base. Therefore, we advocate future research to focus on effective IaC manage-
ment, especially considering the challenges posed by configuration-related bugs. IaC scripts
are found to be one part of the configuration system in OpenStack that can differ in the best
development practices from one type of configuration file to another (Bessghaier et al. 2023).
Therefore, identifying and involving the right individuals in the review and development pro-
cess can significantly contribute to the overall stability and efficiency of the software project.
Particularly, organizations can identify team members who demonstrate proficiency in IaC
tools and code review practices, as it allows knowledge sharing between the development

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 41 of 52 106

team. Moreover, integrating these specialized developers into the development of Non-IaC
code changes can maximize their contributions and ultimately align with organizational
objectives for efficient infrastructure management.

For tool builders In the context of IaC, proactive measures can significantly enhance the
quality of code reviews. IaC tool builders play a pivotal role in this process by incorporat-
ing automated checks that facilitate IaC code comprehensiveness and also assessment. One
effective approach involves implementing bots equipped with integrated checklists, such as
the one we propose in our study. This checklist, refined through a survey with Top reviewers
involved in IaC code changes in OpenStack, encapsulates key considerations for evaluating
various facets of IaC code reviews contributing to the overall quality of IaC code. Addition-
ally, introducing specific linters tailored to capture deviations from established best practices
proves invaluable. These linters should seamlessly integrate into the development workflow,
automatically executing whenever a new IaC code change is on the verge of submission or
has been submitted. This ensures that essential checks are consistently applied, mitigating
the likelihood of developers who may occasionally forget to engage a linter for their code.

6 Threats to Validity

Internal Validity About the correctness of our checklist, we use the Krippendorf agreement
score to confirm that both authors have identified the same criteria in each IaC code change, to
help increase our confidence in the understanding of the identified criteria. Every disagree-
ment is discussed with the co-authors until a consensus is reached. The initial agreement
between the authors was measured using Krippendorff’s α (Krippendorff 2018), yielding a
score of 0.83, indicating strong agreement. After discussing any disagreements, the authors
achieved a second-round agreement score of 0.99. Additionally, another threat to validity can
be related to the sample we selected for manual analysis to identify our code review checklist,
as it is not possible to analyze over 300 thousand code reviews. This threat to validity affects
our experimental study related to the construction of our code review checklist (RQ4), as
there could be other items that are relevant for the code review checklist that are not cov-
ered by our selected sample. To mitigate this issue, we selected a representative sample with
a confidence level of 95%, and a confidence interval of 5% to select our sample. However,
there may exist other code review items that are not covered by our representative sample.We
believe an important future work is to expand our sample to potentially identify more items
in our code review checklist. Hence, we do not claim that our checklist is comprehensive.
Furthermore, our defined 38 items in our checklist might not be relevant for the three phases
of the cycle.We acknowledge that while our checklist provides broad preliminary guidelines,
certain items may not apply to or be present in every phase. Furthermore, we acknowledge
that the topic of a code change could impact the review effort. For example, refactoring edits
often prompt different review discussions than non-refactoring ones. As a future direction, we
delve into the topics of IaC code changes. An additional threat relates to whether the assigned
reviewers to a code change are all involved in the review process. This threat could overes-
timate the number of reviewers in RQ2. It is crucial to acknowledge that not every reviewer
assigned to a code change necessarily leaves inline comments or exchanged messages. Some
reviewers might just vote for the code review; some others could join the review process at
a later time to thoroughly assess and validate or disprove the code change. Therefore, we
consider the number of the assigned reviewers to a code change in the Gerrit platform as the
estimated needed developers to review a code change, similar to other studies (AlOmar et al.

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 42 of 52 Empirical Software Engineering (2025) 30:106

2021, 2022; Coelho et al. 2021; Rigby and Bird 2013). Furthermore, regarding our survey,
we used a 4-point Likert scale to ensure that developers decide on whether an item in our
checklist is considered relevant or not. Including a neutral option could potentially dilute the
responses, as it would allow respondents to avoid making a definitive judgment, which might
not align with our goal of validating our checklist. Furthermore, we acknowledge that the
expertise of reviewers is a potential threat to the validity of our findings. To address this, we
computed the Reviewer Contribution Score (RCS), revealing that the top-5% of reviewers
mostly contributing to the OpenStack review process are reviewing IaC code changes. This
finding supports the claim that experienced reviewers are involved in reviewing IaC changes.

Construct Validity The first threat to validity concerns the selection of IaC-related code
changes. Our results might not accurately reflect all code changes that involve IaC scripts,
as the code changes we studied were selected randomly from a set of code changes with at
least one IaC file. Furthermore, we recognize that we might not find all co-modified files in
a code change are dependent, i.e., explicitly refer to each other, which might overestimate
the number of co-modified files for IaC code changes. We acknowledge that an IaC file
may depend on the project’s other IaC or Non-IaC scripts. However, we do not take these
dependencies into account, as we focus on the files that are co-modified in a code change and
are undergoing a related change. For example, in some IaC-related code changes, we found
cases of release-notes or “.md” files co-modified with IaC scripts. These files are indeed
not dependent but undergo the same change. Furthermore, other studies found that IaC and
Non-IaC scripts are co-evolving (Jiang and Adams 2015), and based on our manual analysis,
98% of code changes included files that underwent the same change. Thus, we assume that all
files co-modified in a code change undergo a related change.While we found that IaC-related
code changes have larger sizes than Non-IaC-related changes in terms of the number of files,
this could be a statistical effect evoked by the sampling procedure as the IaC-related changes
should contain at least one IaC file. This threat could impact our selection of IaC and Non-
IaC code changes. To further investigate this aspect, we manually analyzed a representative
sample (confidence level = 95%, and confidence interval = 5%) of 379 code changes having
at least one IaC file that was randomly selected using the Sampling R package.44 Out of
the 379 code changes, 291 contain only IaC scripts, while 88 included at least one Non-IaC
file. These 88 code changes were manually analyzed to determine if the co-changed files
were affected by an IaC-related change. From these 88 code changes, 63 code changes only
contained additional release-notes or “.md” files, whichwere deemed IaC-related as they only
document the committed changes. The remaining 25 code changes were further analyzed,
where 13 were found to only include additional test files for the IaC-related changes. Finally,
12 code changeswere left to examine, and among them, fourwere found to undergo no related
impact to IaC, while the other eight did. Our analysis revealed that only four code changes
out of the sample were not entirely related to IaC, resulting in a 98% precision rate. Another
potential threat relates to external factors that could bias the comparison between the code
review attributes for IaC and Non-IaC code changes. To mitigate this, we assessed the impact
of the file’s size, age, and release cycle on the nine attributes. Furthermore, the selection of
our IaC code changes could overestimate the number of IaC reviewers among the pool of
most active reviewers in RQ3. However, upon checking the share of code changes performed
by both IaC and Non-IaC reviewers, we found that the top-5% of reviewers contributed more
to Non-IaC code changes than to IaC code changes with a significant p-value <0.001 and

44 https://cran.r-project.org/web/packages/sampling/index.html

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 43 of 52 106

Fig. 13 The share of IaC and Non-IaC reviewed code changes by the top-5% reviewers

a large effect size as shown in Fig. 13. Consequently, the probability of a top-5% reviewer
contributing to Non-IaC code changes is higher than for IaC code changes.

Another potential threat relates to the different review practices depending on the IaC tool.
We did not differentiate code review practices based on the linguistic differences between
Puppet and Ansible tools that could influence the review process. Our primary focus was to
analyze the overall code review effort and patterns within the context of the IaC review in
the OpenStack release cycle. However, examining the nuances between Puppet and Ansible
could provide further insights into how specific syntactic and semantic characteristics might
affect reviewpractices anddevelopers’ contributions. Furthermore, amajor threat to validity is
related to the calculation of reviewers’ experience. Obtaining the experience of each reviewer
is challenging given the volume of data in our dataset, and that each code change could
have more than one reviewer. Hence, we first removed all “services users” not to
overestimate the reviewers’ experience. Then, we adopted the Contribution Ratio (CR), used
by prior research (Peruma et al. 2019; Scoccia et al. 2019; AlOmar et al. 2021) in the context
of developer’s contribution, where we used the number of reviewed code changes as a proxy
of experience. The reasoning is that the more a reviewer participates in code reviews, the
more experienced they become. Another potential threat relates to the use of the release
dates as checkpoints at which the reviewer’s contribution score is quantified. This threat can
underestimate our evaluation of the reviewer’s contribution scores in RQ3. We acknowledge
that a reviewer contribution score should increase after every code change performed by the
reviewer. However, since we have many code reviews (over 300k), it becomes impractical
to compute the contribution score after every code change. Therefore, as we want to capture
the engagement of reviewers with IaC code changes over time, we evaluate the contribution
of reviewers on a release-by-release approach. We employ the release dates as checkpoints
that will allow comparability between reviewers’ contribution evaluation and showcase the

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 44 of 52 Empirical Software Engineering (2025) 30:106

evolution of reviewers’ contribution in IaC code changes over the releases. A possible threat is
related to the pool of surveyed developers who validated our checklist. We acknowledge that
these developers might not have a comprehensive background in IaC development principles.
However, we addressed this threat by contacting the 100 most active developers (in terms
of the number of performed code reviews) working on IaC code changes. Thus, we assume
that these most contributing developers to IaC code changes are the most acknowledged of
IaC development practices. Besides, we surveyed 9% of these developers, which falls within
the accepted standards in software engineering (Khatoonabadi et al. 2023). Additionally,
another threat relates to the possibility of surveying the OpenStack community to validate
our checklist. We recognize that involving a broader segment of the OpenStack community
could further enhance the validity and acceptance of the identified criteria. However, our
decision to initially limit the validation to the top-100 developers was motivated by several
factors. First, these top-100 developers possess a deep understanding of the IaC changes and
the unique challenges associated with IaC, making their input particularly valuable. Second,
the selection criteria for the surveyed individuals were based on their significant contributions
and active participation in the review process, which we believed would ensure a high level
of expertise and relevance in their feedback. Furthermore, we recognize that various factors
may reflect a developer’s expertise, including years of professional experience, frequency of
contributions, and the diversity of projects. However, in this study, we specifically focus on
a developer’s review expertise (cf. Section 3.3.1), which we define based on the number of
authored and reviewed code changes, in line with the approach by AlOmar et al. (2021). Our
reviewer contribution score (RCS) represents how active a reviewer is in terms of reviewing
and authoring code changes.

External Validity In this study, we focused on the OpenStack ecosystem because it exten-
sively uses various IaC tools,which allowsus to identify awide range of IaCcriteria.However,
the diversity of IaC tools does not guarantee that our findings apply to other projects. The
identified criteria may vary from one project to another. Despite this, the criteria we identi-
fied are generic and can be encountered in any IaC context. Still, researchers are encouraged
to replicate our study using other software systems that adopt the IaC technology. How-
ever, the diversity of IaC tools considered in this study does not guarantee that our findings
apply to other projects. Particularly, depending on the project’s usage of IaC tools, the com-
parison between IaC and Non-IaC code changes may yield different results. Additionally,
depending on the project’s maturity, we might not find dedicated developers working on IaC
code changes. However, the criteria identified in the checklist are generic and not project-
dependent, meaning they can be encountered in non-OpenStack projects. A few of them are
language-agnostic, such as “Add filters to Ansible tasks for boolean comparison”, which can
be found in projects using Ansible IaC tool. Furthermore, our approach can be replicated
in any code review platform, such as pull request-based projects, as these review platforms
typically follow similar steps in the code review process. Furthermore, we acknowledge
that our study focuses on merged IaC and Non-IaC code changes. We excluded abandoned
code changes to reduce noise as they may have been abandoned for reasons unrelated to
code quality (e.g., project changes, socio-technical or personal issues (Almarimi et al. 2023,
2020, 2021, 2020), developer priorities (Khatoonabadi et al. 2023; Wang et al. 2019), or
accidental submissions (Wang et al. 2021a, b)). Therefore, we do not generalize our results
to abandoned code changes, they represent another valuable area for further investigation
and could deliver interesting insight. Hence, exploring the differences between merged and
abandoned code changes, as well as the reasons for abandoning a code change, represents an
interesting direction for future research.

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 45 of 52 106

7 RelatedWork

We present in this subsection related works on 1) IaC from different software engineering
perspectives and 2) code review practices.

Infrastructure-as-code adoption, evolution, and maintenance One of the key benefits of
using IaC is that it allows practitioners to apply the same code best-practices for managing
infrastructure as they do for any other software application code. There have been several
studies on this topic, but they have mainly focused on understanding good and bad practices
in IaC coding (Kumara et al. 2021), IaC code smells detection (Rahman et al. 2019; Schwarz
et al. 2018), and IaC quality assurance (Van der Bent et al. 2018; Dalla Palma et al. 2020;
Sharma et al. 2016; Shambaugh et al. 2016).

Kumara et al. (2021) establishes a taxonomy of 10 types of best practices and four types of
poor practices for three major IaC tools: Ansible, Chef, and Puppet. The analysis reveals the
challenges and the solutions adopted by practitioners to address some of these challenges.
The study concludes that more research is required on the development and maintenance
of the IaC tools. Guerriero et al. (2019) further gained an understanding of the challenges
related to the IaC development and testing in industrial environments through a survey of 44
practitioners. Jiang and Adams (2015) examined how IaC scripts and other software artifacts
(such as source code and build files) co-evolve, and found that up to 45% of IaC changes tend
to modify test or production files. Other researchers have focused on the maintainability of
IaC code. For example, Van der Bent et al. (2018) proposed a maintainability measurement
model for Puppet scripts. In the same vein, Dalla Palma et al. (2020) provided 46 metrics to
evaluateAnsible IaC scripts,which covered (1) long and complicated code such as the number
of blank lines and comments, (2) resources overload such as the number of commands and
parameters, and (3) Ansible practices such as the number of external modules.

Similar to traditional software systems, researchers also investigate the detection of “code
smells” in IaC scripts to evaluate their quality. Sharma et al. (2016) investigated poor Puppet
IaC coding practices and proposed a catalog of 13 implementations and 11 designs smells.
Rahmanet al. (2019) examined the security aspect of Puppet files by identifying seven security
code smells. Similarly, Schwarz et al. (2018) investigated code smells for the Chef IaC tool by
identifying possible violations of Chef design guidelines. Shambaugh et al. (2016) proposed
the Rehearsal tool to check the non-deterministic Puppet scripts. The determinism ensures
the seamless execution of puppet files in different environments.

All the aforementioned studies have focused on investigating the best practices for coding
with IaC. Our work builds on top of this research by focusing on code review best practices
in the context of IaC configuration files.

Code review practices and impact The code review is among the effective code best prac-
tices that are extensively studied for code-related changes (Bacchelli andBird 2013;McIntosh
et al. 2016; Uchôa et al. 2020), but not for IaC configuration files. Several researchers inves-
tigated the relationship between code review and software quality. For instance, McIntosh
et al. (2016) explored the impact of code review on the number of post-release defects from
the perspectives of code review coverage, code reviewer degree of participation, and code
reviewer expertise. Through a case study of four projects, the study fosters the intuition that
poorly reviewed code could harm its quality. Uchôa et al. (2020) investigated the relation-
ship between the review process’s problems and software design degradation. The results
obtained on 14,971 code changes from seven software projects claim that the code review
practices of long discussions and the high proportion of review disagreement increased the

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 46 of 52 Empirical Software Engineering (2025) 30:106

design degradation. In the same vein, Pascarella et al. (2019) observed the impact of the code
review practices on the severity of the code smells. Upon a sample of 21,879 code changes in
seven open-source Java projects, the results suggested that code changes significantly influ-
ence the likelihood of reducing the severity of code smells. Furthermore, Pascarella et al.
(2018) analyzed the questions and answers in the 900 code reviews of three Open source
projects to identify the information reviewers need to conduct a proper code review. They
found seven high-level needs, such as requesting a core reviewer to confirm the change or
requesting further clarification of the context of the change. In the same line, Ebert et al.
(2021) discussed the reasons behind reviewers’ confusion in code reviews. Their analysis
of manually analyzing code review comments and developers’ responses based on a survey
highlighted 30 reasons. Primarily, they found that long and complex code changes, unclear
commit messages, and the dependency between different code changes are the Top three
reasons leading to confusion.

Factors’ impact on the code review process Recent studies have examined the impact of
some factors on the code review process. Jiang et al. (2013) observed that the number of
reviewers can impact the time taken for a code review. Building upon this, Bosu and Carver
(2014) found that core developers receive faster initial feedback on their review requests and
tend to complete the review process more expeditiously. Furthermore, Baysal et al. (2016)
conducted an empirical study, revealing that both technical factors (e.g., patch size) and non-
technical factors (e.g., author experience)may impact the duration of the code review process.
Similarly, Thongtanunam et al. (2017) demonstrated that code review participation can be
influenced by the author’s past activities, the length of the change description, and the nature
of the change being proposed. Notably, some studies reported that code review practices
might vary depending on the files or practices that are being reviewed. For example, AlOmar
et al. (2021) showed through an industrial case study at Xerox that reviewing refactoring
changes takes a long review duration and requires more exchanged messages between the
reviewers. Furthermore, Thongtanunam et al. (2015) showed that defective files are less
rigorously reviewed than non-defective files. The study also shares the claim that the rigor of
the review quality on a code file could impact its defect-proneness. In our study, we explore
code review practice in the context of IaC scripts.

8 Conclusion

This study aims to understand the process of reviewing code changes for Infrastructure as
Code (IaC). While code review is a common practice in both open-source and industrial
projects, the practice of code review in the context of IaC has not been thoroughly studied.
Therefore, we conducted a mixed-method study to explore the code review practices related
to IaC and how they differ to Non-IaC code given their distinct operational and syntactical
differences. First, we inspected and quantified the IaC code change review density based on
ten review attributes. We found that reviewers take the same time to review and merge IaC
code changes as they do for non-IaC code changes. However, IaC developers tend to generate
1.82 times more churn, while reviewers exchange 1.1 times more messages when reviewing
IaC-related code changes to reach a consensus. Furthermore,we discovered that the top-5%of
reviewers contribute more to the review process of IaC code changes than the remaining 95%
of reviewers; that is, dedicated reviewers are specifically assigned to participate in the review
of IaC code changes. Then, we qualitatively investigate the exchanged messages to identify
the criteria reviewers rely on to accept merge an IaC code change. We found 38 criteria

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 47 of 52 106

within seven broad topics, such as dependencies, compatibility, and logic. Understanding the
review practices used in IaC code changes can help managers more effectively plan for these
reviews and allow developers to improve the quality of their IaC code changes by following
best practices. This can also benefit reviewers by potentially reducing the duration required
to review IaC-related code changes. It is also important for a developer to self-examine their
IaC code changes to avoid coding issues that could slow down the review process. For future
work, we plan to incorporate an analysis that differentiates code reviews based on the specific
IaC tools used. This would involve examining whether the linguistic differences between IaC
tools lead to variations in review time, the number of reviewers, types of issues encountered,
and overall review practices. We plan to further support developers with which source files
can be impacted in response to their related IaC changes. We also plan to explore IaC quality
assurance tools and techniques that can support the code review process.

Author Contributions Narjes Bessghaier: Conceptualization, Methodology, Data curation, Validation, Formal
analysis,Writing - original draft, Investigation.AliOuni: Conceptualization,Methodology,Validation,Writing
- review & editing, Supervision. Mohamed Sayagh: Conceptualization, Methodology, Validation, Writing -
review & editing, Supervision. Moataz Chcouchen: Conceptualization, Methodology, Validation, Writing -
review & editing. Mohamed Wiem Mkaouer: Conceptualization, Methodology, Validation, Writing - review
& editing.

Funding This research has been partially funded by the Natural Sciences and Engineering Research Council
of Canada (NSERC) RGPIN-2018-05960.

Data Availability The datasets generated during and/or analyzed during the current study and the scripts are
available in the following GitHub repository, https://github.com/stilab-ets/iacreview.

Declarations

Ethical Approval Not applicable.

Conflicts of Interest The authors declare that they have no conflict of interests and competing interests.

References

Almarimi N, Ouni A, Chouchen M, Mkaouer MW (2021) csdetector: an open source tool for community
smells detection. In: Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 1560–1564

Almarimi N, Ouni A, Chouchen M, Mkaouer MW (2023) Improving the detection of community smells
through socio-technical and sentiment analysis. Journal of Software: Evolution and Process 35(6):e2505

Almarimi N, Ouni A, Chouchen M, Saidani I, Mkaouer MW (2020) On the detection of community smells
using genetic programming-based ensemble classifier chain. In: Proceedings of the 15th International
Conference on Global Software Engineering, pp. 43–54

Almarimi N, Ouni A, Mkaouer MW (2020) Learning to detect community smells in open source software
projects. Knowl-Based Syst 204:106201

AlOmar EA, AlRubaye H, Mkaouer MW, Ouni A, Kessentini M (2021) Refactoring practices in the context
of modern code review: An industrial case study at xerox pp. 348–357

AlOmar EA, Chouchen M, Mkaouer MW, Ouni A (2022) Code review practices for refactoring changes: An
empirical study on openstack pp. 689–701

AlOmar EA, Liu J, Addo K, Mkaouer MW, Newman C, Ouni A, Yu Z (2022) On the documentation of
refactoring types. Autom Softw Eng 29:1–40

AlOmar EA, Peruma A, Mkaouer MW, Newman CD, Ouni A (2021) Behind the scenes: On the relationship
between developer experience and refactoring. Journal of Software: Evolution and Process p. e2395

AlOmar EA, Venkatakrishnan A, Mkaouer MW, Newman C, Ouni A (2024) How to refactor this code? an
exploratory study on developer-chatgpt refactoring conversations. In: 21st International Conference on
Mining Software Repositories, pp. 202–206

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 48 of 52 Empirical Software Engineering (2025) 30:106

Alrubaye H, Mkaouer MW, Ouni A (2019) Migrationminer: An automated detection tool of third-party java
library migration at the method level. In: IEEE international conference on software maintenance and
evolution (ICSME), pp. 414–417

Bacchelli A, Bird C (2013) Expectations, outcomes, and challenges of modern code review. In: 2013 35th
International Conference on Software Engineering (ICSE), pp. 712–721. IEEE

Baum T, Liskin O, Niklas K, Schneider K (2016) A faceted classification scheme for change-based industrial
code reviewprocesses. In: 2016 IEEE International conference on software quality, reliability and security
(QRS), pp. 74–85. IEEE

Baysal O, Kononenko O, Holmes R, Godfrey MW (2016) Investigating technical and non-technical factors
influencing modern code review. Empir Softw Eng 21:932–959

Van der Bent E, Hage J, Visser J, Gousios G (2018) How good is your puppet? an empirically defined and
validated quality model for puppet. In: 2018 IEEE 25th international conference on software analysis,
evolution and reengineering (SANER), pp. 164–174. IEEE

Bessghaier N, SayaghM, Ouni A,MkaouerMW (2023)What constitutes the deployment and run-time config-
uration system? an empirical study on openstack projects. ACM Transactions on Software Engineering
and Methodology

Bosu A, Carver JC (2014) Impact of developer reputation on code review outcomes in oss projects: An
empirical investigation. In: Proceedings of the 8th ACM/IEEE international symposium on empirical
software engineering and measurement, pp. 1–10

Brikman Y (2019) Terraform: Up & Running: Writing Infrastructure as Code. O’Reilly Media
CatolinoG, PalombaF, ZaidmanA, Ferrucci F (2019)Not all bugs are the same:Understanding, characterizing,

and classifying bug types. J Syst Softw 152:165–181
Cliff N (1993) Dominance statistics: Ordinal analyses to answer ordinal questions. Psychol Bull 114(3):494
Coelho F, Tsantalis N, Massoni T, Alves EL (2021) An empirical study on refactoring-inducing pull requests.

In: Proceedings of the 15th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), pp. 1–12

Cohen J, Cohen P, West SG, Aiken LS (2013) Applied multiple regression/correlation analysis for the behav-
ioral sciences. Routledge

Conover WJ (1998) Practical nonparametric statistics, vol. 350. John Wiley & Sons
Cruzes DS, Dyba T (2011) Recommended steps for thematic synthesis in software engineering. In: 2011

international symposium on empirical software engineering and measurement, pp. 275–284. IEEE
Cuzick J (1985) A wilcoxon-type test for trend. Stat Med 4(1):87–90
Dalla Palma S, Di Nucci D, Palomba F, Tamburri DA (2020) Towards a catalogue of software quality metrics

for infrastructure code. Journal of Systems and Software p. 110726
Dalla PalmaS,DiNucciD, TamburriDA (2020)Ansiblemetrics:Apython library formeasuring infrastructure-

as-code blueprints in ansible. SoftwareX 12:100633
Davila N, Nunes I (2021) A systematic literature review and taxonomy of modern code review. J Syst Softw

177:110951
Ebert F, Castor F, Novielli N, Serebrenik A (2021) An exploratory study on confusion in code reviews. Empir

Softw Eng 26:1–48
Edwards AL (1985) Multiple regression and the analysis of variance and covariance. WH Freeman/Times

Books/Henry Holt & Co
item example, C (2021a) https://review.opendev.org/c/openstack/puppet-ironic/+/528250
item example: C (2021b) https://review.opendev.org/c/openstack/kolla-ansible/+/676219
item example: C (2021c) https://review.opendev.org/c/openstack/kolla-ansible/+/509186/1/ansible/group_

vars/all.yml#319
item example: C (2021d) https://review.opendev.org/c/openstack/tripleo-heat-templates/+/238998/14..21/

puppet/extraconfig/all_nodes/neutron-midonet-all-nodes.yaml#b89
item example: C (2021e) https://review.opendev.org/c/openstack/kolla-ansible/+/676216/2..3//COMMIT_

MSG#b12
item example: C (2021f) https://review.opendev.org/c/openstack/tripleo-heat-templates/+/238998/2..21/

puppet/manifests/overcloud_compute.pp#b71
item example: C (2021g) https://review.opendev.org/c/openstack/tripleo-heat-templates/+/269058/2..8/

puppet/manifests/overcloud_controller_pacemaker.pp#104
item example: C (2021h) https://review.opendev.org/c/openstack/puppet-octavia/+/626637/9..12/spec/

classes/octavia_worker_spec.rb#b54
item example: C (2021i) https://review.opendev.org/c/openstack/tripleo-upgrade/+/554914/4..5/templates/

l3_agent_start_ping.sh.j2#b9
item example: C (2021j) https://review.opendev.org/c/openstack/puppet-tripleo/+/613698/8..9/manifests/

profile/base/tuned.pp#b22

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 49 of 52 106

item example: C (2021k) https://review.opendev.org/c/openstack/openstack-helm-addons/+/519591/6..8/.
zuul.yaml#b17

item example: C (2021l) https://review.opendev.org/c/openstack/bifrost/+/649291/1/playbooks/roles/bifrost-
ironic-install/tasks/main.yml#57

item example: C (2021m) https://review.opendev.org/c/openstack/puppet-swift/+/172021/5..7/templates/
proxy/dlo.conf.erb#b1 (2021)

item example: C (2021n) https://review.opendev.org/c/openstack/puppet-tripleo/+/527403/6..7/manifests/
profile/pacemaker/rabbitmq_bundle.pp#b229

item example: C (2021o) https://review.opendev.org/c/openstack/tempest/+/509242/8..11/.zuul.yaml#b13
(2021)

item example: C (2021p) https://review.opendev.org/c/openstack/puppet-tripleo/+/645477/3..4/manifests/
selinux.pp#b48

item example: C (2021q) https://review.opendev.org/c/openstack/puppet-neutron/+/307419/6..9/spec/
classes/neutron_plugins_ml2_arista_spec.rb#b50

item example: C (2021r) https://review.opendev.org/c/openstack/puppet-neutron/+/382551/2..6/manifests/
plugins/ovs/opendaylight.pp#b76

item example: C (2021s) https://review.opendev.org/c/openstack/openstack-ansible-os_tempest/+/625904/9..
10/defaults/main.yml#b284

item example: C (2021t) https://review.opendev.org/c/openstack/openstack-ansible-os_nova/+/391532/5..6/
tasks/nova_disable_smt.yml#b18

item example: C (2021u) https://review.opendev.org/c/openstack/openstack-ansible-haproxy_server/+/
586774/4..12/tasks/haproxy_ssl_letsencrypt.yml#b60

item example: C (2021v) https://review.opendev.org/c/openstack/openstack-ansible-haproxy_server/+/
586774/9..12/doc/source/configure-haproxy.rst#b156

item example: C (2021w) https://review.opendev.org/c/openstack/puppet-cinder/+/150658/3..8/manifests/
keystone/auth.pp#b103

item example: C (2021x) https://review.opendev.org/c/openstack/tripleo-heat-templates/+/238998/20..21/
puppet/manifests/overcloud_controller.pp#b317

item example: C (2021y) https://review.opendev.org/c/openstack/openstack-ansible-os_barbican/+/341761
item example: C (2021z) https://review.opendev.org/c/openstack/puppet-nova/+/423507/1..4/manifests/

metadata/novajoin/api.pp#b103
item example: C (2021aa) https://review.opendev.org/c/openstack/puppet-neutron/+/382551/5..6/manifests/

plugins/ovs/opendaylight.pp#b76 (2021)
item example: C (2021aa) https://review.opendev.org/c/openstack/puppet-cinder/+/346531/1..4/manifests/

volume/dellsc_iscsi.pp#b63
item example: C (2021ab) https://review.opendev.org/c/openstack/tripleo-upgrade/+/661302/25..33/tasks/

upgrade/undercloud_os_upgrade.yaml#b44
item example: C (2021ac) https://review.opendev.org/c/openstack/puppet-openstack-integration/+/595370/

3..4/manifests/repos.pp#b124
item example: C (2021ad) https://review.opendev.org/c/openstack/openstack-ansible-os_nova/+/391532/1..

6/tasks/nova_disable_smt.yml#b37
item example: C (2021ae) https://review.opendev.org/c/openstack/puppet-neutron/+/307419/7/manifests/

plugins/ml2/arista/l3_arista.pp#66
itemexample:C (2021af) https://review.opendev.org/c/openstack/tempest/+/509242/6..11/roles/run-tempest/

tasks/main.yaml#b14
item example: C (2021ag) https://review.opendev.org/c/openstack/puppet-neutron/+/404892/4..6/manifests/

plugins/ml2/fujitsu/cfab.pp#b44
item example: C (2021h) https://review.opendev.org/c/openstack/puppet-tripleo/+/674955/6/manifests/

profile/base/docker.pp#306
Glaser BG, Strauss AL (1967) The discovery of grounded theory: Strategies for qualitative research. Routledge

(1967). http://www.sxf.uevora.pt/wp-content/uploads/2013/03/Glaser_1967.pdf
GuerrieroM, GarrigaM, Tamburri DA, Palomba F (2019) Adoption, support, and challenges of infrastructure-

as-code: Insights from industry. In: 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 580–589. IEEE

Han X, Tahir A, Liang P, Counsell S, Luo Y (2021) Understanding code smell detection via code review:
A study of the openstack community. In: 2021 IEEE/ACM 29th International Conference on Program
Comprehension (ICPC), pp. 323–334. IEEE

Hochstein L, Moser R (2017) Ansible: Up and Running: Automating configuration management and deploy-
ment the easy way. “O’Reilly Media, Inc.”

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 50 of 52 Empirical Software Engineering (2025) 30:106

Jiang Y, Adams B (2015) Co-evolution of infrastructure and source code-an empirical study. In: 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories, pp. 45–55. IEEE

Jiang Y, Adams B, German DM (2013) Will my patch make it? and how fast? case study on the linux kernel.
In: 2013 10th Working conference on mining software repositories (MSR), pp. 101–110. IEEE

Khatoonabadi S, Costa DE, Abdalkareem R, Shihab E (2023) On wasted contributions: Understanding
the dynamics of contributor-abandoned pull requests-a mixed-methods study of 10 large open-source
projects. ACM Transactions on Software Engineering and Methodology 32(1):1–39

Kim G, Debois P, Willis J, Humble J (2016) The DevOps Handbook: How to Create World-Class Agility,
Reliability, and Security in Technology Organizations. IT Revolution Press

Krippendorff K (2018) Content analysis: An introduction to its methodology. Sage publications
Kula RG, Ouni A, German DM, Inoue K (2018) An empirical study on the impact of refactoring activities on

evolving client-used apis. Inf Softw Technol 93:186–199
Kumara I, Garriga M, Romeu AU, Di Nucci D, Tamburri DA, van den Heuvel WJ, Palomba F (2021) The

do’s and don’ts of infrastructure code: A systematic grey literature review. Information and Software
Technology p. 106593

Launchpad (2016a) Example of a code review bug on a package dependency issue. https://bugs.launchpad.
net/puppet-horizon/+bug/1556132

Launchpad (2016b) Example of a code review bug on configuration options conflict. https://bugs.launchpad.
net/tripleo/+bug/1532352

Li R, Soliman M, Liang P, Avgeriou P (2022) Symptoms of architecture erosion in code reviews: A study of
two openstack projects. In: 2022 IEEE 19th International Conference on Software Architecture (ICSA),
pp. 24–35. IEEE

Likert R (1932) A technique for the measurement of attitudes. Archives of psychology (1932)
McIntosh S, Kamei Y, Adams B, Hassan AE (2016) An empirical study of the impact of modern code review

practices on software quality. Empir Softw Eng 21(5):2146–2189
Moris K (2021) Infrastructure as code dynamic systems for the cloud age
Napierala MA (2012) What is the bonferroni correction? Aaos Now pp. 40–41
Opdebeeck R, Zerouali A, De Roover C (2022) Smelly variables in ansible infrastructure code: Detection,

prevalence, and lifetime. In: Proceedings of MSR’22: Proceedings of the 19th International Conference
on Mining Software Repositories (MSR 2022). ACM

OpenDev (2016) Example of a code review comment on a code review comment on best-practice issue. https://
review.opendev.org/c/openstack/puppet-neutron/+/307419/6..9

OpenDev (2016) Example of a code review comment on ansible tasks dependency issue. https://review.
opendev.org/c/openstack/openstack-ansible-os_nova/+/391532/1..6/tasks/nova_disable_smt.yml#b37

OpenDev (2016c) Example of a code review comment on security issue. https://review.opendev.org/c/
openstack/puppet-neutron/+/404892/4..6/manifests/plugins/ml2/fujitsu/cfab.pp#b44

OpenDev (2017) Example of a code review comment on documentation issue: lack of explanatory
code comments. https://review.opendev.org/c/openstack/kolla-ansible/+/509186/1/ansible/group_vars/
all.yml#319

OpenDev (2017) Example of a code review comment on documentation issue: lack of release-notes. https://
releases.openstack.org/victoria/index.html

OpenDev (2017c) Example of a code review comment on iac guidelines ansible tasks issue. https://review.
opendev.org/c/openstack/tempest/+/509242/8..11/.zuul.yaml#b13

OpenDev (2017d) Example of a code review comment on iac guidelines issue. https://review.opendev.org/c/
openstack/puppet-cinder/+/491309/2..4/manifests/init.pp#b381

OpenDev (2018) Example of a code review comment on a configuration dependency issue. https://review.
opendev.org/c/openstack/puppet-openstack-integration/+/595370/3..4/manifests/repos.pp#b124

OpenDev (2019a) Example of a code review comment on a compatibility issue. https://review.opendev.org/c/
openstack/tripleo-upgrade/+/661302/25..33/tasks/upgrade/undercloud_os_upgrade.yaml#b44

OpenDev (2019b) Example of a code review comment on logics issue. https://review.opendev.org/c/openstack/
puppet-octavia/+/626637/9..12/spec/classes/octavia_worker_spec.rb#b54

OpenDev (2020) Example of a code review comment on testing issue. https://review.opendev.org/c/openstack/
bifrost/+/750656/comment/9f560f44_2663e843/

OpenStack (2011) Diablo release. https://releases.openstack.org/diablo/index.html
OpenStack (2016a) Branch model. https://wiki.openstack.org/wiki/Branch_Model
OpenStack (2016b) Productteam. https://wiki.openstack.org/wiki/ProductTeam
OpenStack (2019) Releases. https://docs.openstack.org/contributors/common/releases.html
OpenStack (2020) Victoria release. https://releases.openstack.org/victoria/index.html
OpenStack (2021) Release management. https://docs.openstack.org/project-team-guide/release-

management.html

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Empirical Software Engineering (2025) 30:106 Page 51 of 52 106

OpenStack (2022) Stable branches. https://docs.openstack.org/project-team-guide/stable-branches.html
Pascarella L, Spadini D, Palomba F, Bacchelli A (2019) On the effect of code review on code smells.

arXiv:1912.10098
Pascarella L, Spadini D, Palomba F, Bruntink M, Bacchelli A (2018) Information needs in contemporary code

review. Proceedings of the ACM on human-computer interaction 2(CSCW):1–27
Peruma A, Mkaouer MW, Decker MJ, Newman CD (2019) Contextualizing rename decisions using refactor-

ings and commit messages. In: 2019 19th International Working Conference on Source Code Analysis
and Manipulation (SCAM), pp. 74–85. IEEE

Peruma A, Newman CD, Mkaouer MW, Ouni A, Palomba F (2020) An exploratory study on the refactoring
of unit test files in android applications. In: IEEE/ACM 42nd International Conference on Software
Engineering Workshops, pp. 350–357

Rahman A, Farhana E,Williams L (2020) The ‘as code’activities: Development anti-patterns for infrastructure
as code. Empir Softw Eng 25:3430–3467

Rahman A, Mahdavi-Hezaveh R, Williams L (2019) A systematic mapping study of infrastructure as code
research. Inf Softw Technol 108:65–77

Rahman A, Parnin C (2023) Detecting and characterizing propagation of security weaknesses in puppet-based
infrastructure management. IEEE Transactions on Software Engineering

Rahman A, Parnin C, Williams L (2019) The seven sins: Security smells in infrastructure as code scripts. In:
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pp. 164–175. IEEE

RahmanA, RahmanMR, Parnin C,Williams L (2021) Security smells in ansible and chef scripts: A replication
study. ACM Transactions on Software Engineering and Methodology (TOSEM) 30(1):1–31

Ray B, Posnett D, Filkov V, Devanbu P (2014) A large scale study of programming languages and code
quality in github. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations
of software engineering, pp. 155–165

Redhat (2022) What is infrastructure as code (iac)? https://www.redhat.com/en/topics/automation/what-is-
infrastructure-as-code-iac

Rigby PC, Bird C (2013) Convergent contemporary software peer review practices. In: Proceedings of the
2013 9th joint meeting on foundations of software engineering, pp. 202–212

Sadowski C, Söderberg E, Church L, SipkoM, Bacchelli A (2018)Modern code review: a case study at google.
In: Proceedings of the 40th international conference on software engineering: Software engineering in
practice, pp. 181–190

Saidani I, Ouni A, Mkaouer MW, Palomba F (2021) On the impact of continuous integration on refactoring
practice: An exploratory study on travistorrent. Inf Softw Technol 138:106618

Sayagh M, Kerzazi N, Adams B (2017) On cross-stack configuration errors. In: 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering (ICSE), pp. 255–265. IEEE

Schwarz J, Steffens A, Lichter H (2018) Code smells in infrastructure as code. In: 2018 11th International
Conference on the Quality of Information and Communications Technology (QUATIC), pp. 220–228.
IEEE

Scoccia GL, Peruma A, Pujols V, Malavolta I, Krutz DE (2019) Permission issues in open-source android
apps: An exploratory study. In: 2019 19th International Working Conference on Source Code Analysis
and Manipulation (SCAM), pp. 238–249. IEEE

ShambaughR,WeissA,GuhaA (2016)Rehearsal: A configuration verification tool for puppet. In: Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, pp.
416–430

Sharma T, Fragkoulis M, Spinellis D (2016) Does your configuration code smell? In: 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories (MSR), pp. 189–200. IEEE

Silva D, Tsantalis N, ValenteMT (2016)Why we refactor? confessions of github contributors. In: Proceedings
of the 2016 24th acm sigsoft international symposium on foundations of software engineering, pp. 858–
870

Taylor M, Vargo S (2014) Learning Chef: A Guide to Configuration Management and Automation. “O’Reilly
Media, Inc.”

Teixeira JA,KarstenH (2019)Managing to release early, often andon time in the openstack software ecosystem.
Journal of Internet Services and Applications 10:1–22

Thongtanunam P, McIntosh S, Hassan AE, Iida H (2015) Investigating code review practices in defective files:
An empirical study of the qt system. In: 2015 IEEE/ACM 12thWorking Conference onMining Software
Repositories, pp. 168–179. IEEE

Thongtanunam P, McIntosh S, Hassan AE, Iida H (2017) Review participation in modern code review: An
empirical study of the android, qt, and openstack projects. Empir Softw Eng 22:768–817

Turnbull J, McCune J (2011) Pro Puppet, vol. 1. Springer

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 106 Page 52 of 52 Empirical Software Engineering (2025) 30:106

Uchôa A, Barbosa C, Oizumi W, Blenílio P, Lima R, Garcia A, Bezerra C (2020) How does modern code
review impact software design degradation? an in-depth empirical study. 36th ICSME pp. 1–12

Vasilescu B, Yu Y, Wang H, Devanbu P, Filkov V (2015) Quality and productivity outcomes relating to
continuous integration in github. In: Proceedings of the 2015 10th joint meeting on foundations of
software engineering, pp. 805–816

Wang Q, Xia X, Lo D, Li S (2019) Why is my code change abandoned? Inf Softw Technol 110:108–120
Wang D, Kula RG, Ishio T, Matsumoto K (2021a) Automatic patch linkage detection in code review using

textual content and file location features. Inf Softw Technol 139:106637
Wang S, Bansal C, Nagappan N (2021b) Large-scale intent analysis for identifying large-review-effort code

changes. Inf Softw Technol 130:106408
Wang C, Lou Y, Liu J, Peng X (2023) Generating variable explanations via zero-shot prompt learning. In:

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 748–
760. IEEE

XuT, ZhouY (2015) Systems approaches to tackling configuration errors: A survey. ACMComputing Surveys
(CSUR) 47(4):1–41

Yang X, Kula RG, Yoshida N, Iida H (2016) Mining the modern code review repositories: A dataset of
people, process and product. In: Proceedings of the 13th International Conference on Mining Software
Repositories, pp. 460–463

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Authors and Affiliations

Narjes Bessghaier1 · Ali Ouni1 ·Mohammed Sayagh1 ·Moataz Chouchen1 ·
Mohamed Wiem Mkaouer2

B Ali Ouni
ali.ouni@etsmtl.ca

Narjes Bessghaier
narjes.bessghaier.1@ens.etsmtl.ca

Mohammed Sayagh
mohammed.sayagh@etsmtl.ca

Moataz Chouchen
moataz.chouchen.1@ens.etsmtl.ca

Mohamed Wiem Mkaouer
mwmvse@rit.edu

1 ETS Montreal, University of Quebec, Montreal, QC, Canada
2 Rochester Institute of Technology, Rochester, NY, USA

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center
GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers
and authorised users (“Users”), for small-scale personal, non-commercial use provided that all
copyright, trade and service marks and other proprietary notices are maintained. By accessing,
sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of
use (“Terms”). For these purposes, Springer Nature considers academic use (by researchers and
students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and
conditions, a relevant site licence or a personal subscription. These Terms will prevail over any
conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription (to
the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of
the Creative Commons license used will apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may
also use these personal data internally within ResearchGate and Springer Nature and as agreed share
it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not otherwise
disclose your personal data outside the ResearchGate or the Springer Nature group of companies
unless we have your permission as detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial
use, it is important to note that Users may not:

use such content for the purpose of providing other users with access on a regular or large scale

basis or as a means to circumvent access control;

use such content where to do so would be considered a criminal or statutory offence in any

jurisdiction, or gives rise to civil liability, or is otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association

unless explicitly agreed to by Springer Nature in writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a

systematic database of Springer Nature journal content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a
product or service that creates revenue, royalties, rent or income from our content or its inclusion as
part of a paid for service or for other commercial gain. Springer Nature journal content cannot be
used for inter-library loans and librarians may not upload Springer Nature journal content on a large
scale into their, or any other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not
obligated to publish any information or content on this website and may remove it or features or
functionality at our sole discretion, at any time with or without notice. Springer Nature may revoke
this licence to you at any time and remove access to any copies of the Springer Nature journal content
which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or
guarantees to Users, either express or implied with respect to the Springer nature journal content and
all parties disclaim and waive any implied warranties or warranties imposed by law, including
merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published
by Springer Nature that may be licensed from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a
regular basis or in any other manner not expressly permitted by these Terms, please contact Springer
Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

