
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/377842852

On the Prevalence, Co-occurrence, and Impact of Infrastructure-as-Code Smells

Conference Paper · December 2023

DOI: 10.1109/SANER60148.2024.00009

CITATIONS

2
READS

75

6 authors, including:

Narjes Bessghaier

École de Technologie Supérieure

11 PUBLICATIONS 76 CITATIONS

SEE PROFILE

Mahi Begoug

École de Technologie Supérieure

6 PUBLICATIONS 23 CITATIONS

SEE PROFILE

Ali Ouni

École de Technologie Supérieure

186 PUBLICATIONS 5,369 CITATIONS

SEE PROFILE

Mohammed Sayagh

École de Technologie Supérieure

27 PUBLICATIONS 522 CITATIONS

SEE PROFILE

All content following this page was uploaded by Narjes Bessghaier on 03 September 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/377842852_On_the_Prevalence_Co-occurrence_and_Impact_of_Infrastructure-as-Code_Smells?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/377842852_On_the_Prevalence_Co-occurrence_and_Impact_of_Infrastructure-as-Code_Smells?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Narjes-Bessghaier?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Narjes-Bessghaier?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ecole_de_Technologie_Superieure2?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Narjes-Bessghaier?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mahi-Begoug?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mahi-Begoug?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ecole_de_Technologie_Superieure2?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mahi-Begoug?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ali-Ouni?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ali-Ouni?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ecole_de_Technologie_Superieure2?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ali-Ouni?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed-Sayagh-2?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed-Sayagh-2?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ecole_de_Technologie_Superieure2?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed-Sayagh-2?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Narjes-Bessghaier?enrichId=rgreq-a37a55f54a8be58ec1662e6d577cf38c-XXX&enrichSource=Y292ZXJQYWdlOzM3Nzg0Mjg1MjtBUzoxMTQzMTI4MTI3NTQxMzYyOEAxNzI1Mzc5OTA0Mjg2&el=1_x_10&_esc=publicationCoverPdf

On the Prevalence, Co-occurrence, and Impact of
Infrastructure-as-Code Smells

Narjes Bessghaier*, Mahi Begoug*, Chemseddine Mebarki*, Ali Ouni*, Mohammed Sayagh*, Mohamed Wiem Mkaouer†

*ETS Montreal, University of Quebec, Montreal, QC, Canada
‡Rochester Institute of Technology, Rochester, NY, USA

{narjes.bessghaier,mahi.begoug,chemseddine.mebarki}.1@ens.etsmtl.ca, {ali.ouni,mohammed.sayagh}@etsmtl.ca, mwmvse@rit.edu

Abstract—In modern software systems, Infrastructure-as-Code
(IaC) tools play a pivotal role in automating the management
of various infrastructure resources such as networks, databases,
and services. This automation is done through code-based spec-
ification files, commonly known as IaC files. Similarly to other
code files, IaC files can suffer from violations of established
implementation and design standards, i.e., IaC smells. Although
prior research has studied various aspects of traditional smells
in non-IaC artifacts, there is little knowledge of how IaC
smells are prevalent, co-occurring, and impacting the change
and defect proneness of IaC code. To fill this gap, we conduct
an empirical study encompassing 82 Puppet-based open-source
projects. Our investigation focused on 12 types of IaC smells
in both implementation and design levels. Our findings reveal
that IaC smells do not manifest uniformly, as IaC smells that
are particularly associated with modularity issues, exhibit high
prevalence rates across projects. Additionally, we found that 74%
of IaC files are smelly and over 52% of the smelly IaC files have
at least two co-occurring IaC smells. Furthermore, our findings
highlight that, on average, smelly IaC files are modified nearly
3.8 times, in terms of number of commits, more frequently than
non-smelly IaC files. Furthermore, smelly IaC files are found to
be 3.1 times more prone to larger code changes, in terms of code
churn, than non-smelly IaC files. Additionally, we found that
smelly IaC files are 3.3 times more prone to the introduction of
defects that are likely to persist in 1.65 more commits before
being fixed than non-smelly IaC files. These findings advocate
developers to be more aware of IaC smells in their projects and
consider their correction.

Index Terms—Infrastructure-as-Code (IaC), Puppet, Code
change, IaC smells, Defects-proneness

I. INTRODUCTION

Infrastructure-as-Code (IaC) is a modern approach to au-
tomatically manage, provision and deploy infrastructure re-
sources, such as networks, databases, and services [1]. Instead
of relying on people to manually give instructions to set up
the resources, IaC uses specific tools such as Puppet [2],
Ansible [3], and Terraform [4], where each of these tools
is responsible for automating various aspects of the creation,
setting up and configuration of the infrastructure. IaC works
by using machine-readable files to consistently automate the
management of infrastructures. By using IaC configuration
files, developers can ensure consistent deployment of their
configurations in diverse environments [5] and apply the same
coding practices to the infrastructure as they do with non-
IaC artifacts. For instance, the quality of the infrastructure
code is maintained through code reviews, version control, and

automated tests [6]. This approach simplifies infrastructure
management and scalability while maintaining reliability and
predictability, as the system evolves.

However, implementing IaC comes with its own set of chal-
lenges [7]. A notable concern is the violation of established
best coding practices within IaC files, known as “code smells”
in traditional software development [8]. We refer to the smells
in IaC files as IaC smells that manifest as inconsistencies, poor
design choices, or violations of standards within the code that
defines and configures the underlying infrastructure resources.
Given that the management of infrastructure resources can
progressively escalate in complexity over time [5, 9], IaC files
should be free of smells to avoid potential disruptions [10].

While there exists a large body of research exploring best
and poor coding practices in IaC artifacts [11, 12, 13, 14, 15],
there exists little knowledge about the prevalence of IaC
smells, and the impact associated with these smells on IaC
maintenance efforts and IaC defects. For instance, an IaC
smell related to deprecated code statements [16] can lead
to future compatibility defects. In the project puppet-swift1,
a defect emerged when a deprecated code statement related
to the way variables should be accessed was identified2.
Understanding the prevalence of IaC smells, and their impact
on the maintenance efforts of IaC and IaC defect proneness,
will raise awareness of the impact of IaC smells and motivate
researchers and IaC tool developers to propose solutions for
automatically fixing IaC smells.

Therefore, to better understand the impact and prevalence
of IaC smells in software projects, we conduct an empirical
study on a set of 82 open-source Puppet-based projects3 and
12 types of IaC smells related to Puppet (an IaC tool). We
focus our analysis on Puppet [2] as it is a popular IaC tool in
practice, being among the Top-3 IaC tools in terms of use by
developers [7] and is widely-used in recent studies [17, 18].
Further, the availability of an established catalog and tool
support for Puppet-related smells enables us to conduct a
comprehensive analysis [16]. Specifically, we select a catalog
of 12 types of IaC smells related to Puppet established by
Sharma et al. [16], and analyze their prevalence, co-occurrence

1https://github.com/openstack/puppet-swift
2https://bugs.launchpad.net/puppet-swift/+bug/1282717
3https://www.puppet.com

https://github.com/openstack/puppet-swift
https://bugs.launchpad.net/puppet-swift/+bug/1282717
https://www.puppet.com

patterns, and impact on the change- and defect-proneness. To
achieve our goal, we address the following research questions.

RQ1: To what extent are IaC smells prevalent in Puppet-
based projects? Our findings reveal that IaC smells do not
manifest uniformly, as smells that are particularly associated
with modularity issues, exhibit high prevalence rate.

RQ2: What types of IaC smells tend to occur together?
Our findings indicate that 74% of the IaC files are smelly
and that over 52% of IaC smelly files exhibit the presence
of multiple IaC smells, underscoring the prevalence of having
poor coding practices within IaC code.

RQ3: Are smelly IaC files more prone to code changes
than non-smelly IaC files? Our findings highlight that, on
average, smelly IaC files are modified, in terms of commits,
nearly 3.8 times more frequently than non-smelly IaC files.
Furthermore, we found that smelly IaC files are, on average,
3.1 times more prone to code changes (churn) than non-smelly
IaC files. This means that identifying and addressing IaC
smells could be beneficial in terms of code quality.

RQ4: Are smelly IaC files more prone to defects than
non-smelly IaC files? We found that smelly files are, on
average, 3.3 times more prone to the introduction of defects
that are likely to persist in 1.65 more commits before being
fixed. Nonetheless, the churn required to fix these defects
remains relatively the same for both smelly and non-smelly
files. These findings underscore the importance of addressing
IaC smells as a proactive measure to mitigate the risk of
potential defects that could alter the intended behavior of a
Puppet configuration task.

Our paper is organized as follows. Section II summarizes
the related work. Section III describes how we formulate the
design of our empirical study, while Section IV presents and
discusses the results. Finally, Section V discusses our threats
to validity, and we conclude and describe our future directions
in Section VI.

II. RELATED WORK

A. Studies on IaC practices and smells

While there have been numerous recent studies on IaC, most
of them have focused on understanding good and bad practices
in IaC coding [11], IaC smells detection [12, 13], and IaC qual-
ity assurance [10, 14, 15, 16]. Some researchers have focused
on the maintainability of IaC code, where maintainability
measurement models were proposed for Puppet scripts [14].
Subsequently, Guerriero et al. [5] deepened their understand-
ing of the challenges associated with the development of IaC in
industrial settings by conducting a survey involving 44 senior
practitioners. They found that IaC practitioners suffer from
the lack of IaC debugging tools. In the same vein, Palma et
al. [15] provided 46 metrics to evaluate the quality of IaC
files. Kumara et al. [11] further established a taxonomy that
outlines both best and poor practices about IaC tools such
as Ansible, Chef, and Puppet. Their analysis sheds light on
the various challenges faced by IaC coding practitioners and
the corresponding solutions they employ to mitigate these
challenges.

Unlike traditional software systems, researchers investigated
the identification of IaC smells in IaC files to assess their
overall quality. For example, Rahman et al. [12] examined the
security aspect of Puppet files by identifying 7 IaC security
smells. Schwarz et al. [13] investigated IaC smells for the
Chef IaC tool by identifying possible violations of Chef
design guidelines. Rian et al. [10] proposed the Rehearsal
tool to check the non-deterministic Puppet files. Similarly,
Sharma et al. [16] proposed the Puppeteer tool to detect
13 implementations and 11 design smells. Furthermore, the
authors delved into the prevalence and co-occurrence of these
smells. Our study expands the work of Sharma et al. [16]
to further investigate the prevalence of IaC smells at file and
module levels. As well, we employ the Association rule mining
to examine the extent to which types of IaC smells tend to co-
occur.

While the studies mentioned earlier have primarily concen-
trated on the exploration of best and poor coding practices
within IaC, as of our knowledge, there has been no investiga-
tion into assessing the level of effort required for maintenance
and the defect-proneness arising from the presence of IaC
smells.

B. Studies on Code smells prevalence and impact

Unlike IaC, there have been several studies that studied the
impact of smells on non-IaC artifacts. For example, Palomba
et al. [19] investigated how the prevalence of code smells
is related to the size of classes in Java software systems.
Their findings highlight that code smells belonging to large
and complex code are known to be the most persistent.
Similar results are found by Bessghaier et al. [20] when
analyzing 12 code smells in the context of PHP web-based
projects. Chatzigeorgiou et al. [21] investigated the diffusion
of code smells in 24 releases of two Java projects (JFlex, and
JFreeChart). The results revealed a growing number of code
smell instances as the system progressed.

Other studies investigated the co-occurrence of code smells
using the association rule mining algorithm to identify com-
mon co-occurring pairs [22]. Palomba et al. [23] provided
insights into a large-scale analysis on how co-occurring pairs
reside in the system and how developers manage to elimi-
nate coexisting pairs. More recently, Biruk et al. [24] also
investigated the coexisting phenomenon between SQL and
code smells in Java data-intensive programs. In the same line,
Hamdi et al. [25] explored the co-occurrence between 15
types of Android-specific code smells and 10 types of object-
oriented code smells in 1,923 Android application. Their
results highlight that these are highly co-occurring.

Furthermore, other studies investigated the impact of code
smells on the change-proneness of files. Olbrich et al. [26]
found that smelly files are more susceptible to code changes
and are more likely to experience more change size. An
additional study standardizing the size of God and Brain
classes demonstrated that those two classes are less prone to
changes. Khomh et al. [27] investigated the impact of different
types of smells on the change-proneness and found that the

more instances of smell a class has, the more exposed to
changes. These findings were also confirmed by Spadini et
al. [28], who found that further code changes result from
the existence of test smells, which may lead to faults in the
production code.

Moreover, some studies investigated the impact of code
smells on the defect-proneness of files. Saboury et al. [29]
examined the impact of 12 JavaScript smells on the defect-
proneness. The obtained results showed that non-smelly files
are less likely to spread defects by 65%. Biruk et al. [24]
examined the correlation between traditional code and SQL
smells with defects in Java programs. The study indicates
that defects are not statistically proven to be correlated with
SQL smells, unlike traditional code smells. A broad analytical
analysis was performed on over 395 releases of 30 open-
source projects by Palomba et al. [19]. The investigation into
the effect on the defect-proneness of 13 types of code smells
reported that smelly files are 3 times more prone to defects
than non-smelly files. Further research indicated that only 21%
of defects are introduced before smells are introduced in a
class. In addition, classes affected by two or three code smells
are likely to witness more defect-fixing activities [19].

In our study, we build upon prior studies to contribute
insights into the impact of IaC smells on the maintainability of
IaC code and its proneness to defects. We look at examining
whether IaC code susceptibility to change and defect are in
line with those observed in non-IaC artifacts. To the best of
our knowledge, this is the first study that attempted to explore
the impact and occurrences of IaC specific code smells.

III. EMPIRICAL STUDY DESIGN

Our study aims to conduct a comprehensive analysis of IaC
smells in Puppet projects, as it is one of the most popular
IaC tools, focusing on three main aspects: (1) Prevalence,
which assesses the occurrence frequency of IaC smells within
IaC files; (2) Co-occurrence that investigates the patterns of
IaC smells that commonly co-occur within the same file; and
(3) Impact, which entails evaluating how IaC smells affect
the change- and defects-proneness of IaC files. We make
all scripts and data collected during this study available for
future extensions and replications on IaC smells [30]. Figure 1
presents an overview of our empirical study composed of 3
main steps, (Step A) projects selection, (Step B) IaC smells
detection, and (Step C) data analysis.

A. Projects selection

To prepare our dataset, we used the GitHub API4 to sys-
tematically retrieve projects created since 2012 that employ
the programming language “puppet”. Initially, this selection
resulted in a preliminary set containing 22,177 projects. To
refine our dataset, we filtered out forked, private, and archived
projects. Specifically, we retained projects with a balance
of star count of at least 5 and a minimum of 80 commits,
ultimately reducing the list to 414 projects. Next, we exam-
ined the projects to exclude any that incorporate other IaC

4https://docs.github.com/en/rest?apiVersion=2022-11-28

tools besides Puppet. The rationale behind this decision is to
maintain a focused analysis of the changes specific to a single
IaC tool (Puppet in our study). The presence of files related
to multiple IaC tools within one project could potentially lead
to an inflation of change-proneness for one of the IaC tools,
which might distort our findings. By curating the dataset in
this manner, we aim to mitigate the risk of overestimating the
impact of changes on files associated with other IaC tools than
Puppet. Thus, we ensure a more accurate assessment of the
target IaC tool’s change-proneness. We ended up identifying 6
projects with IaC files associated with the Ansible IaC tool, 1
project with Chef-related files, and 95 projects with IaC files
linked to Terraform. Following this step, we were left with a
subset of 102 projects that exclusively pertained to Puppet. To
ensure the dataset’s quality, we further excluded any private
projects that were not accessible by the GitHub API, resulting
in a final selection of 82 projects.

B. IaC smells detection

To collect our dataset of IaC smells occurring within Puppet
IaC files with “.pp” extension, we considered a compre-
hensive set of 12 types of IaC smells associated with both
implementation and design aspects established by Sharma
et al. [16]. We used the “Puppeteer” tool [16] to identify
instances of IaC smells related to design issues. In addition,
we used the “Puppet-Lint” tool version that was extended by
Sharma et al. [16] to detect instances of IaC smells related
to implementation issues. We provide a description of the 4
implementation and 8 design-related IaC smells that have been
identified in our projects, as outlined in Table II. It is important
to note that the IaC smells are identified at two levels of
abstraction, (1) at the file level, we find all instances of IaC
smells within individual files, and (2) at the module level, we
find IaC smells instances that emerge when interactions occur
between IaC files within the same module or between modules
using the “include” command5. We provide in Table I the
statistics of the studied projects.

TABLE I. The studied projects’ statistics.

Statistic Count
Total number of projects 82
Total number of commits 19,641
Total number of smelly IaC files 1,462
Total number of non-smelly IaC files 501
Total number of smells instances 5,213
Studied period 2011-2023
Count of stars 5-79

C. Data Analysis

In this subsection, we describe the analysis method we use
to address each of our defined research questions.

IaC smells prevalence (RQ1): We consider a total of 12
Puppet-related IaC smells that pertain to both implementation
and design aspects. For each IaC file, denoted as Fi, within
a given project Pj , we calculate the frequency of occurrences

5https://subscription.packtpub.com/book/cloud-and-networking/
9781784394882/1/ch01lvl1sec16/using-modules

https://docs.github.com/en/rest?apiVersion=2022-11-28
https://subscription.packtpub.com/book/cloud-and-networking/9781784394882/1/ch01lvl1sec16/using-modules
https://subscription.packtpub.com/book/cloud-and-networking/9781784394882/1/ch01lvl1sec16/using-modules

Step 1: Projects selection

Filter the
projects

Step 2: IaC smells detection

Defect-proneness

Change-proneness

Identify defect-fixing
commits using keywords

Identify defect-inducing
commits using MA-SZZ

Identify
smelly and
non-smelly

files

(Puppeteer)

IaC
smells

(+5k)

Puppet
projects

(82)

Crawl
Puppet
projects

(22,177)

(PuppetLint)

Step 3: Data analysis

Track files changes
between commits

Quantify changes for
smelly and non-smelly filesIaC

files

Non-IaC
files

Fig. 1: Overview of our empirical study

TABLE II. List of IaC implementation and design smells in our study.

IaC smells Description Level Artifact
Complex Expression (ICE) It occurs when the code contains a complex expression that is difficult to understand [16]. Implementation File
Incomplete Tasks (IIT) It occurs when the code contains fix me and to-do tags indicating incomplete tasks [16]. Implementation File
Deprecated Statement Usage (IDS) It occurs when the code uses one of the obsolete instructions (such as import) [16]. Implementation File
Incomplete Conditional (IIC) It occurs when a conditional structure if...elsif is used without a final else clause [16]. Implementation File
Multifaceted Abstraction (DMF) It occurs when each abstraction (e.g., a resource, a class, or a module) does not follow the

principle of single responsibility [16].
Design File

Insufficient Modularization (DIM) It occurs when an abstraction is large or complex and could, therefore, be further modular-
ized [16].

Design File

Tightly Coupled Modularization (DTC) It occurs when two modules are tightly coupled [16]. Design File
Weakened Modularity (DWM) It occurs when a module exhibits high coupling and low cohesion [16]. Design File
Unstructured Module (DUM) It occurs when a module does not have a well-defined and coherent structure [16]. Design Module
Missing Dependency (DMP) It occurs when there are missing dependencies between the declared classes and the included

classes [16].
Design Module

Dense Structure (DDS) It occurs when the code contains excessive and dense dependencies without any particular
structure [16].

Design Module

Deficient Encapsulation (DDE) It occurs when the definition of a node declares a set of global variables to be retrieved by the
classes included in the definition [16].

Design Module

for each of the 12 IaC smell types. Furthermore, we evaluate
the prevalence of these IaC smells per thousand code lines
(KLOC). The KLOC-based evaluation allows us to contextual-
ize the prevalence of IaC smells relative to the size of the files,
providing a more meaningful perspective on their distribution.

IaC smells co-occurrence (RQ2): We employ the Apri-
ori association-rule mining algorithm [31], a well-established
method in association rule mining, used to unveil frequent
item sets within our dataset, which in our case, are pairs of
IaC smells. The output of the Apriori algorithm consists of
a collection of association rules, each signifying associations
between pairs of IaC smells in our study. To quantify the
strength of association for each rule (i.e., a specific pair of
IaC smells), we employ a set of three distinct measures,
Support [32], Confidence [32], and Lift [33].

• Support: it explores the extent to which a pair of IaC
smells (ST1 and ST2) tend to occur together within the
same commit.

Support(ST1 ⇒ ST2) =
ST1

⋃
ST2

Transactions
∈ {0− 1} (1)

• Confidence: it quantifies the probability that an IaC smell
is associated with the presence of another IaC smell, and
its values range between 0 and 1.

Confidence(ST1 ⇒ ST2) =
Support(ST1 ⇒ ST2)

Support(ST1

∈ {0− 1}
(2)

• Lift: it explores the ratio of dependence between IaC
smells. Its value range spans from 0 to +∞. When the lift

value surpasses 1, it indicates a high correlation between
the pair of IaC smells, suggesting a stronger likelihood
of a causal relationship.

Lift(ST1 ⇒ ST2) :
Support(ST1 ⇒ ST2)

Support(ST1)*Support(ST2)
in {0−1}

(3)
To mitigate potential bias against infrequently occurring

IaC smells, we adopt the approach of Bessghaier et al. [20],
entailing the calibration of the support threshold, with the
objective of encompassing 80% of the observed IaC smell
pairs within our analysis. Additionally, we fixed the Lift value
to 1, reflecting our emphasis on identifying strongly correlated
instances of IaC smells.

Furthermore, we employ the Chi-squared [34] test and
Cramer’s V test [35] tests to gauge the degree of association
between the IaC smells in our study. The Chi-squared test is a
statistical method used to evaluate the significance of variation
within the same population between two categorical variables
(in our context, the combined dataset of all projects). This test
is designed to assess the null hypothesis, denoted as −H20 :
IaC smells occur independently of each other. The Cramer’s V,
on the other hand, is an effect size measure applied alongside
the Chi-squared Pearson test to quantify the strength of the
relationship between variables.

IaC smells impact on change-proneness (RQ3): To study
the impact of IaC smells on the change-proneness, we mine
the change history of each project using the git versioning
system. We track all changed Puppet files (with the “.pp”

extension) in all commits. Then, using the Puppeteer and
Puppet-Lint tools, we determine whether the retrieved files
in every single commit fall into the category of being either
smelly or non-smelly. Following this classification, we use
the “Change-frequency” metric to assess the frequency with
which files containing IaC smells undergo modifications in
comparison to non-smelly files. This involves quantifying the
number of commits in which a modified IaC file, denoted
as F , experiences updates between two consecutive commits.
Moreover, we proceed to compute the change-proneness of a
modified IaC file, using Equation 4. This measure quantifies
the extent of changes made to the file across all commits comj

in a project. This analysis aims to test the null hypothesis:
−H30 : smelly IaC files are not more likely to undergo
modifications than non-smelly IaC files.

Change-proneness(F, comi) =

i=n∑
i=1

churn(F, comi) (4)

where n represents the total number of commits. The
function churn(F, comi) calculates the code churn, which
corresponds to the sum of the added and removed code lines
in the IaC file F in the commit comi using The PyDriller
framework [36].

IaC smells impact on defect-proneness (RQ4): This
research question focuses on examining the introduction of
defects during Puppet software development. To achieve this
goal, we analyzed the “Defect-Fixing Commits (DFC)” and
“Defect-Inducing Commits (DIC)” and their correlation with
IaC smells. We define a defect-fixing commit as a code commit
to fix defects, while a defect-inducing commit is a code
commit where a defect is first introduced [37]. To extract the
DICs, we take advantage of the SZZ algorithm proposed by
Sliwerski et al. [38]. The SZZ approach can be divided into
two primary steps: the identification of defect-fixing commits
(DFCs) and the identification of defect-inducing commits
(DICs).

1- DFCs identification: To identify defect-fixing commits,
we initiate the process by selecting commits from each
project that involve modifications to at least one IaC file.
Subsequently, for each of these commits, we examine their
commit messages. If a commit message contains any of the
specific keywords previously employed by established studies
for defect identification [39, 40], such as “error”, “bug”, “fix”,
and “issue”, we categorize it as a defect-fixing commit.

2- DICs identification: Subsequently, to identify the list
of defect-inducing commits, we apply Meta-change Aware
SZZ [41] as a variant of SZZ, which is recommended by
Fan et al. [42]. In their study, Fan et al.[42] explored the
consequences of inaccurately labeled defect-related changes
detected by the SZZ algorithm. They examined the results
generated by four distinct SZZ variants: B-SZZ [41], AG-
SZZ [43], MA-SZZ [42], and RA-SZZ [44]. Notably, their
findings led them to assert that the mislabeled changes pro-
duced by MA-SZZ did not lead to wasted inspection effort in
terms of LOC.

Commits exhibiting
the defect

Defect inducing
commit#1 Defect fixing commit

Defect inducing commit#1: 7dae4491a0e7d307da815d1dd5652a80124898ba
Defect inducing commit#2: fc5c263bec03d238bfc20dda71a65fb7b026ee86
Defect fixing commit: d0bc155ee7a3cfe7bbaebb05b6b968b7d5d3b2f8

Defect inducing
commit#2

 - include kubernetes
13 + include ::kibernetes
…. - owner => ‘kube’
19 + owner => ‘kube’,

18 + ensure => directory,
19 + owner => ‘kube’

96 + include docker
97 + include kubernetes

Fig. 2: MA-SZZ detection process of defects inducing com-
mits.

Given the defect-fixing commit, MA-SZZ (1) searches for
all IaC files that have been modified. Then, for each modified
IaC file in the DFC, the MA-SZZ (2) applies the diff command
to determine the modified (undergone the fixing change) lines
of code (loci=1i → n). Afterward, for each modified line of
code loci in the DFC, the MA-SZZ (3) employs the blame
git command to determine the commits (“Commits-Exhibiting
Defects (CED)”) where loci was modified in previous versions
of the code (previous IaC file revisions), and thus, identifies the
last change (i.e., the DIC) that first changed the modified loci.
An example of the MA-SZZ process is illustrated in Figure 2,
where we identified the DFC with the keyword “Fix”. In
this DFC, we have the “node.pp”6 IaC file that has been
modified with an example of two modified line indexes {13,
19}. Employing the MA-SZZ algorithm, we have identified
two commits as Defect-Inducing Commits (DIC). In the first
DIC (Commit #1), a new line of code was introduced with an
index of 97. In the second DIC (Commit #2), the code line
was added with index 19. It is noteworthy that both of these
added lines, indexed as {97, 19}, were subsequently rectified
in the DFC. Therefore, we identify the initial commits that
introduced changes to these lines of code as DIC. The commits
that fall in between the DIC and the DFC, where the file is
also modified, are categorized as Commits-Exhibiting Defects
(CED). This analysis aims to test the null hypothesis:−H40 :
smelly IaC files are not more prone to defects than non-smelly
IaC files.

To validate the precision of the identified defect-fixing
commits and defect-inducing commits, we performed a manual
evaluation of a randomly selected sample consisting of 375
commits, chosen based on a 95% confidence interval. In
this evaluation, We thoroughly examined whether the defect-
fixing commits addressed defects and whether the defect-
inducing commits were, indeed, linked to the changes made
in the corresponding defect-fixing commits. The first two
authors, having more than 6 years of experience in software
engineering, including 3 years of expertise in Infrastructure-
as-Code (IaC), collaborated on this assessment, categorizing
the commits into one of three classifications: “True”, “False”
or “Unclear”. Any uncertainties between the two authors were
resolved through discussions until a consensus was reached.
Following this manual review, we computed the precision of

6https://github.com/cristifalcas/puppet-kubernetes/blob/master/manifests/
node.pp

https://github.com/cristifalcas/puppet-kubernetes/blob/master/manifests/node.pp
https://github.com/cristifalcas/puppet-kubernetes/blob/master/manifests/node.pp

commits labeled as either “True” or “False”. The precision rate
for defect-fixing commits was determined to be 85.6%. As for
the defect-inducing commits, the precision rate was 97.6%.

Upon gathering all the necessary data, we used statistical
analysis to evaluate the significant difference between our
null hypotheses H30 and H40. Thus, we employed the non-
parametric Mann-Whitney U-test [45] with a confidence level
of 95% (significance level of p-value < 0.05). The Mann-
Whitney U-test assesses the likelihood of one group displaying
dominance over the other group. To provide a comprehensive
analysis, we complement this test by measuring the non-
parametric effect size of the Cliff delta [46]. The effect sizes
are classified as negligible for d < 0.147, small for d < 0.33,
medium for d < 0.474, and large for d ≥ 0.47. It is worth
noting that a file is considered to be smelly if it has at least
one code smell instance. Moreover, we conduct an analysis
to assess the correlation between the size of files changes
(Churn) and the number of lines of code (LOC) to investigate
how the LOC measure influences the extent of files changes.
This investigation was carried out using the Kendall correlation
test [47]. To go deeper into this analysis, we organized the file
sizes into three groups based on the LOC distribution across all
projects using boxplots quartiles, small [<=38 LOC], medium
[>38 AND <=147], and large [>147].

IV. RESULTS ANALYSIS

A. RQ1: IaC smells prevalence

Motivation: This research question aims to provide insights
into the types of IaC smells that are present across the projects
and their frequency of occurrence within IaC files.

Results: IaC smells do not manifest uniformly, and they
exhibit varying levels of prevalence (i.e., smells diffused
across the projects) and frequency (i.e., occurrence number
within a file), falling into three distinct patterns. We report
in Figure 3, (a) the average number of IaC smells at file and
module levels, (b) the average number of affected files by
each type of IaC smells at the file level, (c) the density of IaC
smells per KLOC at the file level. Furthermore, in Table III,
we provide statistics encompassing the percentages of affected
projects, the distribution of IaC smells within smelly IaC
files and modules, and the overall percentage of IaC smells.
Upon our analysis, we notice the presence of three distribution
patterns of IaC smells, characterized by their prevalence and
frequency: (1) a high prevalence and high frequency, (2) a high
prevalence and low frequency, and (3) low prevalence and low
frequency.

High prevalence and high frequency: Within this category,
we identify the subset of IaC smells that exhibit a high
presence across the majority of projects with a high occurrence
in IaC files. At the file level, the “Insufficient Modularization
(DIM)” smell is found in all projects (100%) and makes up
about 30.57% of all IaC smells we have identified. Specifically,
this smell affects nearly 56% of smelly IaC files, with an
average of about 18.75 affected IaC files per project and a
total percentage of 55.92% smelly IaC files across the projects.
This points to a common problem across all projects, where

0

50

100

150

DMF DIM DTC DWM ICE IDS IIC IIT DUM DMP DDS DDE

(a) Distribution of number of IaC smells in all projects.

0

20

40

60

80

100

DMF DIM DTC DWM ICE IDS IIC IIT

(b) Distribution of number of IaC files affected by each IaC smell type.

0

1

2

3

4

DMF DIM DTC DWM ICE IDS IIC IIT

(c) Distribution of IaC smells density per KLOC (Log10).

Fig. 3: Distributions graphs depicting the prevalence of IaC
smells in the studied projects.

Puppet IaC files are either too complex or exceed the 40-
line code limit [16]. This suggests the need for improvement
in terms of simplifying these IaC files. On average, we find
about 17 instances of the “Insufficient Modularization (DIM)”
IaC smell for every thousand lines of code (KLOC). The
project “Puppet-Brocade-vTM” has the highest number of
occurrences, with 119 instances. Another prevalent smell is
the “Tightly Coupled Modules (DTC)”, affecting 96.42% of
projects and showing up in 68.70% of the IaC smelly files,
contributing to 21.35% of all IaC smells. In one project, it
is likely to have an average of 13 coupled modules. We also
find the “Multifaceted Abstraction (DMF)” smell, making up
21.59% of all identified smells and impacting a significant
number of projects (95.23%) and about 45.55% of smelly
IaC files. At the module level, we observe that the “Unstruc-
tured Module (DUM)” smell is spread across all analyzed
projects (100%) and is present in 97.60% of the modules.
This demonstrates that in all projects, there is at least an
average of 5.8 of modules that do not adhere to the Puppet pre-
defined structure [16]. The projects most affected by this smell
are “puppet-monit” and “puppetlabs-patching as code” each
with 12 occurrences.

High prevalence and low frequency: This category en-
compasses IaC smells that are widespread across the majority
of projects but exhibit a relatively lower frequency within
individual IaC files. At the file level, the only IaC smell falling
into this category is the “Weakened Modularity (DWM)”
smell, which manifests when an IaC file demonstrates high
coupling and low cohesion. This particular IaC smell is

identified in 59.52% of the projects and is observed in 16.04%
of the smelly IaC files, constituting a mere 5% of the overall
number of IaC smells. Notably, the projects most impacted by
this smell include “puppet-icinga2-legacy” with a total of 31
occurrences, followed by “cesnet-hadoop” with 29 instances
and “ankus-modules” with 25 occurrences. These findings
suggest that a high number of IaC files within these three
projects exhibit a modularity ratio below 1 [16]. Collectively,
these three projects account for 85 occurrences out of the
total 261 instances of this smell, amounting to 32.56% of its
prevalence. At the module level, the only smell in this category
is the “Missing Dependency (DMP)” which is present in
20.55% of the modules and affects 75.29% of the projects.

Low prevalence and low frequency: This category con-
tains IaC smells that are present in a few projects and affect a
limited number of IaC files. At the file level, all the IaC smells
in this category only represent 5.06% of the total number of
IaC smells affecting IaC files. Particularly, these IaC smells
are all related to implementation violations. For instance,
the IaC smell with the lowest prevalence and frequency is
the “Deprecated Statement (IDS)” smell, which only affects
0.74% of the total smelly IaC files and 10.71% of the studied
projects. It is also the least recurrent smell, accounting for only
0.32% of the total detected smells. At the module level, two
IaC smells were detected in this category; “Dense Structure
(DDS)” and “Deficient Encapsulation (DDE)”. The “Dense
Structure (DDS)” smell is present in 32.94% of the projects
and is detected when a module has excessive and complex
dependencies on other modules. The “Deficient Encapsulation
(DDE)” smell has a spread of 9.41%, indicating that the
affected projects suffer from poor use of global variables,
making them accessible from and usable by any part of the
code.

In summary, our analysis has uncovered a total of 4
implementation-related IaC smells and 8 design-related IaC
smells distributed across all the projects we examined. Among
these, the most prevalent IaC smells, impacting a substantial
number of IaC files, are “Multifaceted Abstraction”, “In-
sufficient Modularization”, “Tightly Coupled Modules”, and
”Unstructured Module” all of which belong to the category
of design smells. These 4 smells primarily pertain to concerns
related to code complexity, length, and the allocation of unique
responsibilities. Conversely, implementation smells, although
fewer, are not widely dispersed and appear to be limited to
specific projects.

B. RQ2: IaC smells co-occurrence

Motivation: Understanding how frequently IaC smells tend
to co-occur is of importance, as it can reveal potential patterns
and relationships between different IaC smells. This knowl-
edge can inform developers about common coding issues that
often appear together, enabling them to proactively address
multiple problems when they encounter one.

Results: Multiple types of IaC smells can concurrently
affect various code components of IaC files, with over 52.29%
of these IaC files containing more than one type of IaC

TABLE III. Prevalence and frequency of IaC smells in the
analyzed projects at the file and module levels.

IaC smells % in projects % in smelly IaC files/
modules

% of IaC
smells

File level IaC smells
High prevalence and high frequency
DIM 100% 55.92% 30.57%
DTC 96.42% 68.70% 21.35%
DMF 95.23% 45.55% 21.59%
High prevalence and low frequency
DWM 59.52% 16.04% 5%
Low prevalence and low frequency
IIC 34.52% 4.38% 2.09%
ICE 25% 2.59% 1.42%
IIT 23.8% 2.77% 1.23%
IDS 10.71% 0.74% 0.32%
Module level IaC smells
High prevalence and high frequency
DUM 100% 97.60% 9.44%
High prevalence and low frequency
DMP 75.29% 20.55% 5.73%
Low prevalence and low frequency
DDS 32.94% 6.58% 0.63%
DDE 9.41% 1.59% 0.59%

smells. Previous investigations by Palomba et al. [19, 23] in
the context of Android mobile applications and Bessghaier
et al. [20, 48] in the domain of web applications have
demonstrated that over 60% of source code is affected by
multiple code smells. Our study extends these findings by
verifying the frequency of IaC smells co-occurrence within
Puppet projects, and we found that while 47.71% of IaC
files exhibit a single type of IaC smell, a significant 52.29%
of the IaC files contain two or more distinct IaC smells.
Specifically, we have 28.77% of IaC files having 2 IaC smells,
18.85% with 3 IaC smells, up to 4.67% with 4 types of
IaC smells. Prior research has indicated that the simultaneous
presence of smells can amplify the susceptibility of code to
changes [19, 20, 48]. Therefore, these findings reflect the
importance of understanding how our analyzed IaC smells
consolidate the co-occurrence phenomenon and its effect on
source code changes.

We delve into the co-occurrence patterns of IaC smells
within code components, exploring whether the presence of
one type of IaC smell implies the presence of another. In
Table IV, we present the Top-10 pairs of IaC smells that
exhibit strong associations based on their lift values across
all the projects we studied. Notably, the pair consisting of
the {“Deficient Encapsulation (DDE)” → “Dense Structure
(DDS)”} IaC smells stands out with a high lift value of
40.17 and a confidence level of 0.63. For instance, within
the context of the “cesnet-hadoop” project, we have identi-
fied a noteworthy prevalence of the “Deficient Encapsulation
(DDE)” code smell, manifesting itself in 15 distinct instances.
The “Deficient encapsulation (DDE)” smell is indicative of
a poor coding practice where modules excessively employ
‘‘include’’ statements, a phenomenon associated with the
heavy reuse of global variables throughout the codebase. Fur-
thermore, we have also observed an occurrence of the “Dense
Structure (DDS)” smell, which is characterized by the pres-
ence of at least two closely interconnected modules within the
project. This observation highlights the interconnectedness and

TABLE IV. Top-10 pairs of IaC smells based on the Lift value
for all projects combined.

IaC smells pairs Support Confidence Lift
DDE⇒DDS <0.01 0.63 40.17
DDS⇒DMP 0.01 0.67 13.73
DDE⇒DMP <0.01 0.5 10.3
IDS⇒ICE <0.01 0.17 8.42
DDE⇒DUM <0.01 1 4.34
ICE⇒IIC <0.01 0.14 4.27
DUM⇒DMP 0.044 0.19 3.96
DDS⇒DUM 0.013 0.85 3.68
DWM⇒DMF 0.071 0.58 1.67
DMF⇒DIM 0.236 0.68 1.59

complexity of the codebase. Similarly, the pair composed of
{“Dense structure (DDS)” → “Missing dependency (DMP)”}
IaC smells exhibits a high lift value of 13.73 and a confidence
level of 0.67, indicative of a strong association between
these IaC smell pairs. Additionally, our analysis revealed a
confidence value of 1 for the pair {“Deficient encapsulation
(DDE)” →“Unstructured module (DUM)”}, implying that a
majority of the Puppet projects lack a predefined and organized
structure, particularly in the way they handle different modules
and their respective manifests. These unstructured modules
exhibit a notable deficiency in encapsulation, meaning that
they lack a clear and well-defined boundary between different
components. In these cases, modules are often not structured,
and they heavily rely on the ‘‘include’’ statement to
interconnect various code components. Therefore, the presence
of the “Deficient encapsulation (DDE)” IaC smell could be
an indicator of the presence of the “Unstructured module
(DUM)” IaC smell within the code.

To comprehensively investigate the relationships between
pairs of IaC smells, we employed both the Chi-squared
test [34] and Cramer’s V test [35] to determine their statistical
significance. Table V provides the outcomes of our Chi-
squared test, assessing the null hypothesis H20, assuming
complete independence between two IaC smells, essentially
investigating the causality between co-occurring IaC smells.
Among the top-10 IaC smells pairs examined in Table V,
all pairs with p-values <0.05 led us to reject the null hy-
pothesis (p-values are highlighted in bold). Further explo-
ration of Cramer’s V scores reveals the degree of association
among these pairs of IaC smells. Notably, the three IaC
pairs {“Multifaceted Abstraction (DMF)” → “Insufficient
Modularization (DIM)”}, {“Unstructured Module (DUM)”
→ “Missing Dependency (DMP)”}, and {“Missing Depen-
dency (DMP)” → “Dense Structure (DDS)”} demonstrates
a moderate association, yielding a Cramer’s V score over
0.35. All other IaC smells pairs display a weak association,
with Cramer’s V scores ranging less than 0.27. It is worth
noting that a high co-occurrence rate does not necessarily
imply a high degree of association. For instance, while “De-
ficient Encapsulation (DDE)” exhibits a strong co-occurrence
with “Weakened Modularity (DWM)”, indicated by a perfect
confidence value in Table IV, it possesses a weak degree of
association, as reflected by a Cramer’s V score of 0.1. This
underscores the importance of considering both co-occurrence

TABLE V. Top-10 most correlated IaC smells pairs based on
Chi-square and Cramer’s V tests.

IaC smells pairs Chi2 p-value Cramers v
DMF⇒DIM <0.01 0.37
DUM⇒DMP <0.01 0.36
DMP⇒DDS <0.01 0.35
DDS⇒DDE <0.01 0.27
DMF⇒DWM <0.01 0.18
DUM⇒DDS <0.01 0.18
DMP⇒DDE <0.01 0.11
DUM⇒DDE <0.01 0.1
ICE⇒IIC <0.01 0.08
ICE⇒IDS <0.01 0.06

and association metrics when assessing the relationships be-
tween IaC smells.

C. RQ3: IaC smells impact on change-proneness

Motivation: Understanding how IaC smells influence the
extent of changes (i.e., churn) made to IaC files, can contribute
to more maintainable and of improved quality infrastructure
configurations by fostering the need to rectify these IaC smells.

Results: Smelly IaC files are 3.8 times more likely to be
modified, in terms of commits, compared to non-smelly IaC
files, with 3.1 times more prone to code changes (churn).
In Figure 4, we observe that smelly IaC files are prone to
frequent changes compared to non-smelly IaC files for small,
medium, and large sized IaC files. Overall, smelly IaC files
are almost 3.8 more subject to be modified, with an average of
12.44 times per file, than non-smelly IaC files, with an average
of 3.24 times per file, along with the project’s evolution. To
statistically assess the significance of the difference, we sup-
ported this result by computing the Mann-Whitney and Cliff’s
delta effect size. The Mann-Whitney proves the significant
difference with a p-value < 0.01 and a large effect size of
0.577. Precisely, the small sized smelly IaC files are 3.7 times
more prone to changes than non-smelly small IaC files with a
p-value < 0.01 and a large effect size of 0.647. The medium-
sized smelly IaC files are 3.6 times more prone to changes than
medium-sized non-smelly IaC files with a p-value < 0.01 and
a large effect size of 0.645. Lastly, the large smelly IaC files
are 7.2 more prone to changes than large non-smelly IaC files
with a p-value < 0.01 and a large effect size of 0.776.

1

2

5

10

20

50

100

Smelly Non−Smelly

Small

1

2

5

10

20

50

100

Smelly Non−Smelly

Medium

1

2

5

10

20

50

100

200

Smelly Non−Smelly

Large

Fig. 4: Distribution of the change frequency of smelly and
non-smelly IaC files for small, medium, and large sized IaC
files.

To further examine the maintenance effort, we report in
Figure 5 the spectrum of code change sizes, i.e., code churn,
in both smelly and non-smelly for small, medium, and large

IaC files. We observe from Figure 5 that smelly IaC files have
a higher code change size than non-smelly IaC files. These
findings indicate that code fragments affected by IaC smells
may require increased maintenance efforts, as they are more
prone to code change. Specifically, the average code change
size that smelly IaC files could experience along the project’s
evolution is 232 with a median of 91, whereas non-smelly
IaC files experience an average code change size of only 76
with a median of 28. Statistically, the Mann-Whitney test has
shown a significant difference between the two populations
with a p-value < 0.01 and a medium effect size of 0.446,
giving us statistical evidence to reject the null hypothesis
H30. On average, smelly IaC files are almost 3.1 times more
subject to code changes than non-smelly IaC files. Similarly
to previous studies in Java object-oriented systems [19, 49]
and web applications [20, 48], we witnessed similar findings
reported in Figure 5, where smelly IaC files exhibit a higher
level of proneness to change compared to non-smelly IaC files.
The smelly IaC files have their maintenance requirements,
which tend to be related to the coexistence of various types of
IaC smells, such as “Complex Expression (ICE)” and “Dense
Structure(DDS)”.

Precisely, in small, medium, and large sized IaC files, we
find that smelly IaC files are always exhibiting a higher code
change compared to non-smelly IaC files. Small sized smelly
IaC files are prone to undergo an average of 77 churn and a
median of 44, compared to an average of 34 and a median
of 12 for small non-smelly IaC files with a p-value < 0.01
and a large effect size of 0.601. Medium size smelly IaC files
are prone to an average of 265 code changes and a median
of 185, compared to an average of 76 and a median of 52 in
non-smelly medium-sized IaC files with a p-value < 0.01 and
a large effect size of 0.613. The large sized smelly IaC files
are prone to an average of 1405 and a median of 898 code
changes, compared to only an average of 264 and a median
of 138 in non-smelly IaC files with a p-value < 0.01 and a
large effect size of 0.869.

0

50

100

150

200

Smelly Non−Smelly

Small

2

5
10
20

50
100
200

500
1000
2000

Smelly Non−Smelly

Medium

10

20

50

100

200

500

1000

2000

5000

Smelly Non−Smelly

Large

Fig. 5: Distribution of code changes (churn) of smelly and
non-smelly IaC files for small, medium, and large sized IaC
files.

D. RQ4: IaC smells impact on defect-proneness

Motivation: By understanding the relationship between IaC
smells and defects, developers would prioritize rectifying IaC
smells and focus their efforts on reviewing and testing files
with IaC smells.

Results: Smelly IaC files are 3.3 times more prone to
the introduction of defects that are likely to persist in 1.65
more commits before being fixed than non-smelly IaC files.
Nonetheless, the churn required to fix these defects remains
relatively the same for both smelly and non-smelly IaC files.
To analyze the impact of IaC smells on defect proneness, we
first investigate the number of defect-inducing commits (DIC)
in smelly and non-smelly IaC files for small, medium, and
large sized. Smelly IaC files are found to be 3.3 times more
prone to defects than non-smelly IaC files with a significant
p-value < 0.01 with a medium effect size. Specifically, as
shown in Figure 6, a consistent trend emerges across varying
IaC file sizes, where smelly IaC files exhibit a higher number
of induced defects. Specifically, within the subset of small
IaC files, smelly IaC files exhibit an average of 0.79 DIC,
in contrast to 0.55 for non-smelly IaC files, revealing a
statistically significant difference with a p-value < 0.01 and
a small effect size. The medium-smelly IaC files witness an
even higher difference with an average of 1.41 compared
to 0.36 for the non-smelly IaC files, with a significant p-
value < 0.01 and a large effect size. Typically, large smelly
IaC files are more prone to defects with an average of 1.94
compared to 0.22, with a significant p-value < 0.01 and a large
effect size. As highlighted in previous studies [19, 20, 29] in
different programming languages, smelly IaC files are more
prone to defects. The reason is that IaC smells represent
poor coding practices that could lead to defects if an IaC
file is carelessly modified. For example, the “Incomplete
Conditional (IIC)” smell represents incomplete or improperly
structured conditionals that can result in configurations that
do not respond correctly to various scenarios. For instance,
if conditional statements are not adequately constructed in
Puppet IaC files, the system may not behave as expected under
certain conditions, such as the example of the “cli.pp” file7

of the project “puppet-wp”8, where some closing ‘‘else’’
branches are missing.

0

2

4

6

8

Smelly Non−Smelly

Small

0

5

10

15

20

25

30

Smelly Non−Smelly

Medium

0

5

10

15

20

25

30

Smelly Non−Smelly

Large

Fig. 6: Distribution of defect-inducing commits in smelly and
non-smelly IaC files for small, medium, and large sized IaC
files.

To investigate the propagation of defects in our studied
projects, we count the CED between the DIC and the DFC.
In general, we found that defects persist in smelly IaC files in
1.65 more commits than non-smelly IaC files, with significant
difference of p-value <0.01 and medium effect size. As

7https://github.com/Chassis/puppet-wp/blob/master/manifests/cli.pp
8https://github.com/Chassis/puppet-wp

https://github.com/Chassis/puppet-wp/blob/master/manifests/cli.pp
https://github.com/Chassis/puppet-wp

reported in Figure 7, we observe that small and medium
smelly IaC files have a slightly higher average of 4.2 and 8.6
compared to 3.8 and 7.3 with non-significant p-values equal
to 0.05 and 0.07, respectively, with negligible effect sizes.
However, the large smelly IaC files are found to undergo a
higher number of DEC before a defect gets fixed in the DFC
with an average of 18 CEDs compared to 10.5 CEDs for the
non-smelly IaC files, with a significant p-value of 0.04 and
small effect size. For example, the “agent.pp” large file9 of
the “puppet-zabbix”10 project took 22 CEDs to fix a legacy
fact that was explicitly commented as “# the agent doesn’t
work perfectly fine with selinux.”

1
2

5
10
20

50
100
200

Smelly Non−Smelly

Small

1
2

5
10
20

50
100
200

Smelly Non−Smelly

Medium

1
2

5
10
20

50
100
200

Smelly Non−Smelly

Large

Fig. 7: Distribution of defect-exhibiting commits of smelly and
non-smelly files for small, medium, and large sized files.

Finally, to get a deeper understanding of the defect-
proneness phenomenon, we investigate the required code churn
in defect-fixing commits (DFC) for both smelly and non-
smelly IaC files for small, medium, and large files, as reported
in Figure 8. An average code churn of 8.57 and an average
of 9.91 is witnessed in small-sized smelly and non-smelly IaC
files with a non-significant p-value of 0.13 and negligible effect
size. The average code churn score for medium size files is
14.7 in smelly IaC files and 14.17 in non-smelly IaC files,
with a non-significant p-value of 0.54 and negative negligible
effect size. Large smelly IaC files undergo an average of 25.43
of code churn compared to an average of 49.51 in non-smelly
IaC files, with non-significant p-value and negative negligible
effect size. Regardless of their size, smelly IaC files witness
lower code churn than non-smelly IaC files. These results
foster the understanding of types of defects that are likely
to manifest in smelly IaC files compared to non-smelly IaC
files.

1
2

5
10
20

50
100
200

Smelly Non−Smelly

Small

1
2

5
10
20

50
100
200

Smelly Non−Smelly

Medium

1
2

5
10
20

50
100
200

Smelly Non−Smelly

Large

Fig. 8: Distribution of code changes (churn) in defect-fixing
commits in smelly and non-smelly files for small, medium,
and large sized files.

9https://github.com/voxpupuli/puppet-zabbix/blob/master/manifests/agent.
pp

10https://github.com/voxpupuli/puppet-zabbix

V. THREATS TO VALIDITY

Internal threats to validity may affect the integrity of our
study. In RQ2, we do not make the explicit assumption that
when IaC smells frequently appear together, one smell causes
the other. Consequently, we cannot definitively conclude that a
specific smell is the root cause of another smell being present.
Besides, our findings concerning how IaC smells influence
changes and defects do not necessarily imply a direct cause-
and-effect relationship. Other factors, such as refactoring or
general code improvements, can also impact these outcomes.
Construct threats to validity can impact the alignment
between the theoretical constructs and measures. To collect our
dataset, we relied on the accuracy of the Puppeteer tool [16].
However, there could still be errors in the detection of IaC
smells. Another potential threat to validity could be related to
the identification of defect-fixing commits using keywords. Al-
though this technique has been widely used in previous studies
[39, 40], it could not be free of false positives when finding
defect-inducing commits. To mitigate this issue, we randomly
selected and analyzed a representative sample of 375 defect-
fixing commits and their related defect-inducing commits and
found a precision over 85% and 97%, respectively.
External threats to validity could impact the generalizability
of our study findings. To the best of our knowledge, this
is the first empirical analysis conducted on the prevalence,
co-occurrence, and impact of IaC smells in Puppet projects.
While we considered 82 projects and 12 IaC smells, we cannot
generalize our results to other projects.

VI. CONCLUSION

In this research paper, we presented an empirical investiga-
tion involving 82 Puppet projects to examine the prevalence
and co-occurrence patterns of 12 types of IaC smells, and
to assess how these IaC smells impact the files’ proneness
to changes and defects. Our findings reveal that IaC smells
are notably prevalent and frequently co-occur within Puppet
projects. For instance, certain IaC smells, such as “Insufficient
Modularization (DIM)” are pervasive. Furthermore, our anal-
ysis indicates that nearly half of the smelly IaC files exhibit
multiple instances of IaC smells. For example, the “Deficient
encapsulation (DDE)” is often associated with three distinct
types of smells, including “Unstructured module (DUM)” and
“Dense Structure (DDS)”. Furthermore, we found that smelly
IaC files are 3.8 times more prone to be modified, with a
3.1 times higher susceptibility to code changes compared to
non-smelly files. As for the defect-proneness, smelly files are
3.3 times more prone to defects that are likely to persist in
1.65 more commits before being fixed than non-smelly files.
Nevertheless, the churn required to fix these defects remains
relatively the same for both smelly and non-smelly files. Our
insights solicit developers to proactively detect and rectify IaC
smells and foster IaC’s best coding practices, particularly in a
rapidly evolving technology landscape. As part of our future
directions, we plan to delve into the specific types of IaC
smells impact on the change proneness and bug proneness.

https://github.com/voxpupuli/puppet-zabbix/blob/master/manifests/agent.pp
https://github.com/voxpupuli/puppet-zabbix/blob/master/manifests/agent.pp
https://github.com/voxpupuli/puppet-zabbix

Furthermore, we plan to develop an automated approach to
fix IaC smells.

REFERENCES

[1] Redhat, “What is infrastructure as code (iac)?.”
https://www.redhat.com/en/topics/automation/
what-is-infrastructure-as-code-iac, 2022.

[2] J. Turnbull and J. McCune, Pro Puppet, vol. 1. Springer,
2011.

[3] L. Hochstein and R. Moser, Ansible: Up and Running:
Automating configuration management and deployment
the easy way. ” O’Reilly Media, Inc.”, 2017.

[4] Y. Brikman, Terraform: Up & Running: Writing Infras-
tructure as Code. O’Reilly Media, 2019.

[5] M. Guerriero, M. Garriga, D. A. Tamburri, and
F. Palomba, “Adoption, support, and challenges of
infrastructure-as-code: Insights from industry,” in 2019
IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 580–589, IEEE, 2019.

[6] A. Rahman, R. Mahdavi-Hezaveh, and L. Williams, “A
systematic mapping study of infrastructure as code re-
search,” Information and Software Technology, vol. 108,
pp. 65–77, 2019.

[7] M. Begoug, N. Bessghaier, A. Ouni, E. Alomar, and
M. W. Mkaouer, “What do infrastructure-as-code practi-
tioners discuss: An empirical study on stack overflow,”
in Proceedings of the 17th International Conference
on Empirical Software Engineering and Measurement,
ESEM ’23, 2023.

[8] M. Fowler and K. Beck, “Refactoring: Improving the
design of existing code,” in 11th European Conference.
Jyväskylä, Finland, 1997.

[9] K. Moris, “Infrastructure as code dynamic systems for
the cloud age,” 2021.

[10] R. Shambaugh, A. Weiss, and A. Guha, “Rehearsal: A
configuration verification tool for puppet,” in Proceed-
ings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 416–
430, 2016.

[11] I. Kumara, M. Garriga, A. U. Romeu, D. Di Nucci, D. A.
Tamburri, W.-J. van den Heuvel, and F. Palomba, “The
do’s and don’ts of infrastructure code: A systematic grey
literature review,” Information and Software Technology,
p. 106593, 2021.

[12] A. Rahman, C. Parnin, and L. Williams, “The seven sins:
Security smells in infrastructure as code scripts,” in 2019
IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pp. 164–175, IEEE, 2019.

[13] J. Schwarz, A. Steffens, and H. Lichter, “Code smells
in infrastructure as code,” in 2018 11th International
Conference on the Quality of Information and Communi-
cations Technology (QUATIC), pp. 220–228, IEEE, 2018.

[14] E. Van der Bent, J. Hage, J. Visser, and G. Gousios,
“How good is your puppet? an empirically defined and
validated quality model for puppet,” in 2018 IEEE 25th

international conference on software analysis, evolution
and reengineering (SANER), pp. 164–174, IEEE, 2018.

[15] S. Dalla Palma, D. Di Nucci, F. Palomba, and D. A. Tam-
burri, “Towards a catalogue of software quality metrics
for infrastructure code,” Journal of Systems and Software,
p. 110726, 2020.

[16] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your
configuration code smell?,” in 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories
(MSR), pp. 189–200, IEEE, 2016.

[17] A. Rahman and T. Sharma, “Lessons from research to
practice on writing better quality puppet scripts,” in 2022
IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 63–67, IEEE,
2022.

[18] A. Rahman and C. Parnin, “Detecting and character-
izing propagation of security weaknesses in puppet-
based infrastructure management,” IEEE Transactions on
Software Engineering, 2023.

[19] F. Palomba, G. Bavota, M. Di Penta, F. Fasano,
R. Oliveto, and A. De Lucia, “On the diffuseness and
the impact on maintainability of code smells: a large
scale empirical investigation,” Empirical Software Engi-
neering, vol. 23, no. 3, pp. 1188–1221, 2018.

[20] N. Bessghaier, A. Ouni, and M. W. Mkaouer, “A longitu-
dinal exploratory study on code smells in server side web
applications,” Software Quality Journal, vol. 29, pp. 901–
941, 2021.

[21] A. Chatzigeorgiou and A. Manakos, “Investigating the
evolution of bad smells in object-oriented code,” in
Seventh International Conference on the Quality of Infor-
mation and Communications Technology, pp. 106–115,
2010.

[22] F. Palomba, R. Oliveto, and A. De Lucia, “Investigating
code smell co-occurrences using association rule learn-
ing: A replicated study,” in IEEE Workshop on Machine
Learning Techniques for Software Quality Evaluation
(MaLTeSQuE), pp. 8–13, 2017.

[23] F. Palomba, G. Bavota, M. Di Penta, F. Fasano,
R. Oliveto, and A. De Lucia, “A large-scale empirical
study on the lifecycle of code smell co-occurrences,”
Information and Software Technology, vol. 99, pp. 1–10,
2018.

[24] B. Asmare Muse, M. Rahman, C. Nagy, A. Cleve,
F. Khomh, and G. Antoniol, “On the prevalence, impact,
and evolution of sql code smells in data-intensive sys-
tems,” in International Conference on Mining Software
Repositories (MSR 2020), 2020.

[25] O. Hamdi, A. Ouni, E. A. AlOmar, and M. W. Mkaouer,
“An empirical study on code smells co-occurrences in
android applications,” in 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineering
Workshops (ASEW), pp. 26–33, IEEE, 2021.

[26] S. M. Olbrich, D. S. Cruzes, and D. I. Sjøberg, “Are
all code smells harmful? a study of god classes and
brain classes in the evolution of three open source

https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac
https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac

systems,” in IEEE International Conference on Software
Maintenance, pp. 1–10, 2010.

[27] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An ex-
ploratory study of the impact of code smells on software
change-proneness,” in Working Conference on Reverse
Engineering, pp. 75–84, 2009.

[28] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and
A. Bacchelli, “On the relation of test smells to software
code quality,” in IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), pp. 1–12,
2018.

[29] A. Saboury, P. Musavi, F. Khomh, and G. Antoniol, “An
empirical study of code smells in javascript projects,” in
International conference on software analysis, evolution
and reengineering (SANER), pp. 294–305, 2017.

[30] “Replication package for the paper: ”on the preva-
lence, co-occurrence, and impact of infrastructure-as-
code smells”.” https://zenodo.org/records/10060209. Ac-
cessed on: May 31, 2023.

[31] R. Agrawal, R. Srikant, et al., “Fast algorithms for min-
ing association rules,” in 20th international conference
on very large data bases, VLDB, vol. 1215, pp. 487–499,
1994.

[32] R. Agrawal, T. Imieliński, and A. Swami, “Mining asso-
ciation rules between sets of items in large databases,” in
ACM SIGMOD international conference on Management
of data, pp. 207–216, 1993.

[33] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dy-
namic itemset counting and implication rules for market
basket data,” in ACM SIGMOD international conference
on Management of data, pp. 255–264, 1997.

[34] M. L. McHugh, “The chi-square test of independence,”
Biochemia medica: Biochemia medica, vol. 23, no. 2,
pp. 143–149, 2013.

[35] H. Cramir, “Mathematical methods of statistics,” Prince-
ton U. Press, Princeton, p. 500, 1946.

[36] D. Spadini, M. Aniche, and A. Bacchelli, “Pydriller:
Python framework for mining software repositories,” in
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Soft-
ware Engineering, pp. 908–911, 2018.

[37] M. Wen, R. Wu, Y. Liu, Y. Tian, X. Xie, S.-C. Cheung,
and Z. Su, “Exploring and exploiting the correlations
between bug-inducing and bug-fixing commits,” in Pro-
ceedings of the 2019 27th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 326–
337, 2019.

[38] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do
changes induce fixes?,” ACM sigsoft software engineer-
ing notes, vol. 30, no. 4, pp. 1–5, 2005.

[39] S. Dalla Palma, D. Di Nucci, F. Palomba, and D. Tam-
burri, “Within-project defect prediction of infrastructure-
as-code using product and process metrics,” IEEE Trans-
actions on Software Engineering, vol. PP, pp. 1–1, 01
2021.

[40] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “To-
wards building a universal defect prediction model,” in
Proceedings of the 11th Working Conference on Min-
ing Software Repositories, MSR 2014, (New York, NY,
USA), p. 182–191, Association for Computing Machin-
ery, 2014.

[41] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza,
R. Coelho, and A. E. Hassan, “A framework for evalu-
ating the results of the szz approach for identifying bug-
introducing changes,” IEEE Transactions on Software
Engineering, vol. 43, no. 7, pp. 641–657, 2017.

[42] Y. Fan, X. Xia, D. A. da Costa, D. Lo, A. E. Hassan,
and S. Li, “The impact of mislabeled changes by szz
on just-in-time defect prediction,” IEEE Transactions on
Software Engineering, vol. 47, no. 8, pp. 1559–1586,
2021.

[43] S. Kim, T. Zimmermann, K. Pan, and E. J. Jr. Whitehead,
“Automatic identification of bug-introducing changes,” in
21st IEEE/ACM International Conference on Automated
Software Engineering (ASE’06), pp. 81–90, 2006.

[44] E. C. Neto, D. A. da Costa, and U. Kulesza, “The
impact of refactoring changes on the szz algorithm:
An empirical study,” in 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pp. 380–390, 2018.

[45] W. J. Conover, Practical nonparametric statistics,
vol. 350. John Wiley & Sons, 1998.

[46] G. Macbeth, E. Razumiejczyk, and R. D. Ledesma,
“Cliff’s delta calculator: A non-parametric effect size
program for two groups of observations,” Universitas
Psychologica, vol. 10, no. 2, pp. 545–555, 2011.

[47] M. G. Kendall, “A new measure of rank correlation,”
Biometrika, vol. 30, no. 1/2, pp. 81–93, 1938.

[48] N. Bessghaier, A. Ouni, and M. W. Mkaouer, “On the
diffusion and impact of code smells in web applications,”
in Services Computing–SCC 2020: 17th International
Conference, Held as Part of the Services Conference
Federation, SCF 2020, Honolulu, HI, USA, September
18–20, 2020, Proceedings 17, pp. 67–84, Springer, 2020.

[49] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Anto-
niol, “An exploratory study of the impact of antipatterns
on class change-and fault-proneness,” Empirical Software
Engineering, pp. 243–275, 2012.

View publication stats

https://www.researchgate.net/publication/377842852

	Introduction
	Related work
	Studies on IaC practices and smells
	Studies on Code smells prevalence and impact

	Empirical study design
	Projects selection
	 IaC smells detection
	Data Analysis

	Results analysis
	RQ1: IaC smells prevalence
	RQ2: IaC smells co-occurrence
	RQ3: IaC smells impact on change-proneness
	RQ4: IaC smells impact on defect-proneness

	Threats to Validity
	Conclusion

